搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版八年级数学下册第二十一章一次函数章节测评试题(含答案解析)

    难点详解冀教版八年级数学下册第二十一章一次函数章节测评试题(含答案解析)第1页
    难点详解冀教版八年级数学下册第二十一章一次函数章节测评试题(含答案解析)第2页
    难点详解冀教版八年级数学下册第二十一章一次函数章节测评试题(含答案解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第二十一章 一次函数综合与测试习题

    展开

    这是一份初中数学第二十一章 一次函数综合与测试习题,共29页。
    八年级数学下册第二十一章一次函数章节测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用表示小球滚动的时间,表示小球的速度.下列能表示小球在斜坡上滚下时与的函数关系的图象大致是(   )

    A. B.
    C. D.
    2、在平面直角坐标系中,已知点,点,在x轴上确定点C,使得的周长最小,则点C的坐标是( )
    A. B. C. D.
    3、若实数、满足且,则关于的一次函数的图像可能是( )
    A. B. C. D.
    4、如图,在平面直角坐标系中,,,,点D在线段BA上,点E在线段BA的延长线上,并且满足,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为( )

    A. B. C. D.
    5、点和点都在直线上,则与的大小关系为( )
    A. B. C. D.
    6、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    1
    2
    3
    4
    5


    x

    ﹣2
    ﹣1
    0
    1
    2

    y2

    5
    2
    ﹣1
    ﹣4
    ﹣7

    则关于x的不等式kx+b>mx+n的解集是(  )
    A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
    7、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为(   )

    A. B. C. D.
    8、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离(单位:)和两车行驶时间(单位:)之间的关系如图所示.下列说法错误的是( ).

    A.两车出发时相遇 B.甲、乙两地之间的距离是
    C.货车的速度是 D.时,两车之间的距离是
    9、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.

    则下列结论:
    ①A,B两城相距300千米;
    ②乙车比甲车晚出发1小时,却早到1小时;
    ③乙车出发后2.5小时追上甲车;
    ④当甲、乙两车相距50千米时,或.
    其中正确的结论有( )
    A.1个 B.2个 C.3个 D.4个
    10、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
    A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系xOy中,过点A(5,3)作y轴的平行线,与x轴交于点B,直线y=kx+b(k,b为常数,k≠0)经过点A且与x轴交于点C(9,0).我们称横、纵坐标都是整数的点为整点.

    (1)记线段AB,BC,CA围成的区域(不含边界)为W.请你结合函数图象,则区域W内的整点个数为______;
    (2)将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围______.
    2、已知直线y=kx+b(k≠0)的图像与直线y=-2x平行,且经过点(2,3),则该直线的函数表达式为______________________.
    3、正比例函数图像经过点(1,-1),那么k=__________.
    4、用待定系数法确定一次函数表达式所需要的步骤是什么?
    ①设——设函数表达式y=___,
    ②代——将点的坐标代入y=kx+b中,列出关于___、___的方程
    ③求——解方程,求k、b
    ④写——把求出的k、b值代回到表达式中即可.
    5、将直线沿轴向上平移2个单位长度后的直线所对应的函数表达式是__________.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知一次函数图象与直线平行且过点.
    (1)求一次函数解析式;
    (2)若(1)中一次函数图象,分别与、轴交于、两点,求、两点坐标;
    (3)若点在轴上,且,求点坐标.
    2、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).
    (1)求证:点(﹣2,﹣3)在直线l2上;
    (2)当m=2时,请判断直线l1与l2是否相交?
    3、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:

    A种产品
    B种产品
    成本价(元/件)
    400
    300
    销售价(元/件)
    560
    450
    (1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?
    (2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?
    4、直线,与直线相交于点.

    (1)求直线的解析式;
    (2)横、纵坐标都是整数的点叫做整点.记直线与直线和轴围成的区域内(不含边界)为.
    ①当时,直接写出区域内的整点个数;
    ②若区域内的整点恰好为2个,结合函数图象,求的取值范围.
    5、如图1,一个正立方体铁块放置在圆柱形水槽内,水槽的底面圆的面积记为,正立方体的底面正方形的面积记为.现以一定的速度往水槽中注水,28秒时注满水槽.此时停止注水,并立刻将立方体铁块用细线竖直匀速上拉直至全部拉出水面.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.

    (1)正立方体的棱长为______cm,______;
    (2)当圆柱形水槽内水面高度为12cm时,求注水时间是几秒?
    (3)铁块完全拉出时,水面高度为______cm.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    静止开始沿一个斜坡滚下,其速度每秒增加的值相同即可判断.
    【详解】
    解:由题意得,
    小球从静止开始,设速度每秒增加的值相同为.

    即.
    故是正比例函数图象的一部分.
    故选:C.
    【点睛】
    本题考查了函数关系式,这是一个跨学科的题目,实际上是利用“即时速度初始速度加速度时间”,解题的关键是列出函数关系式.
    2、C
    【解析】
    【分析】
    因为AB的长度是确定的,故△CAB的周长最小就是CA+CB的值最小,作点A关于x轴的对称点A′,连接A′B交x轴于点C,求出C点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点C,此时,AC+BC=A′C+BC=AC,长度最小,
    ∵A(-1,2),
    ∴A′(-1,﹣2),
    设直线A′B的解析式为y=kx+b(k≠0),把A′(-1,﹣2),代入得,
    ∴,解得,
    ∴直线A′B的解析式为y=-2x﹣4,
    当y=0时,x=-2,
    ∴C(-2,0).
    故选:C

    【点睛】
    本题考查了轴对称-最短路径问题,一次函数与坐标轴交点问题,解题关键是确定点C的位置,利用一次函数解析式求坐标.
    3、B
    【解析】
    【分析】
    根据实数、满足可知,、互为相反数,再根据,可确定、的符号,进而确定图象的大致位置.
    【详解】
    解:∴实数、满足,
    ∴、互为相反数,
    ∵,
    ∴,,

    ∴一次函数的图像经过二、三、四象限,
    故选:B.
    【点睛】
    本题考查了一次函数图象的性质,解题关键是根据已知条件,确定、的符号.
    4、A
    【解析】
    【分析】
    过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,求出直线AB、AC的解析式,设出点D、E、M的坐标,根据△DGM≌△MFE,建立方程求解即可.
    【详解】
    解:过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,
    设直线AB的解析式为,把,代入得,
    ,解得,,
    ∴AB的解析式为,
    同理可求直线AC的解析式为,
    设点D坐标为,点M坐标为,
    ∵,

    ∵,,
    ∴点E是由点D向右平移3个单位,向上平移9个单位得到的,则点E坐标为,
    ∵∠EFM=∠DGM=∠DME
    ∴∠FEM+∠FME=∠DMG+∠FME =90°,
    ∴∠FEM =∠DMG,
    ∵DM=EM,
    ∴△DGM≌△MFE,
    ∴DG=FM,GM=EF,
    根据坐标可列方程组,b-a=3a+18+1.5b-9-1.5b+9-3a-9=b-a-3,
    解得,,
    所以,点M坐标为,
    故选:A.

    【点睛】
    本题考查了求一次函数解析式和全等三角形的判定与性质,解题关键是求出直线解析式,设出点的坐标,利用全等三角形建立方程.
    5、B
    【解析】
    【分析】
    根据 ,可得 随 的增大而减小,即可求解.
    【详解】
    解:∵ ,
    ∴ 随 的增大而减小,
    ∵ ,
    ∴ .
    故选:B
    【点睛】
    本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.
    6、D
    【解析】
    【分析】
    根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
    【详解】
    解:根据表可得y1=kx+b中y随x的增大而增大;
    y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
    则当x>﹣1时,kx+b>mx+n.
    故选:D.
    【点睛】
    本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
    7、A
    【解析】
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A

    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    8、D
    【解析】
    【分析】
    根据函数图象分析,当时,函数图象有交点,即可判断A选项;根据最大距离为360即可判断B选项,根据A选项可得两车的速度进而判断C,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D选项.
    【详解】
    解:根据函数图象可知,当时,,总路程为360km,
    所以,轿车的速度为,货车的速度为:
    故A,B,C正确
    时,轿车的路程为,货车的路程为,
    则两车的距离为
    故D选项不正确
    故选D
    【点睛】
    本题考查了一次函数的应用,从图象上获取信息是解题的关键.
    9、B
    【解析】
    【分析】
    当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.
    【详解】
    ∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,
    ∴①正确;
    ∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,
    ∴乙车比甲车晚出发1小时,却早到1小时;
    ∴②正确;
    设,
    ∴300=5m,
    解得m=60,
    ∴;
    设,

    解得,
    ∴;

    解得t=2.5,
    ∴2.5-1=1.5,
    ∴乙车出发后1.5小时追上甲车;
    ∴③错误;
    当乙未出发时,,
    解得t=;
    当乙出发,且在甲后面时,,
    解得t=;
    当乙出发,且在甲前面时,,
    解得t=;
    当乙到大目的地,甲自己行走时,,
    解得t=;
    ∴④错误;
    故选B.
    【点睛】
    本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.
    10、A
    【解析】
    【分析】
    先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.
    【详解】
    ∵正比例函数y=3x中,k=3>0,
    ∴y随x的增大而增大,
    ∵x1>x2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
    二、填空题
    1、 3 ≤n<
    【解析】
    【分析】
    (1)根据题意和图象,可以得到区域W内的整点个数;
    (2)根据直线y=kx+b过点A和点C,从而可以得到直线的表达式是y=-x+,设平移后的直线解析式是y=-x+m,分别代入(6,2)、(6,1)求得m的值,结合图象即可求得.
    【详解】
    解:(1)由图象可得,

    区域W内的整点的坐标分别为(6,1),(6,2),(7,1),
    即区域W内的整点个数是3个,
    故答案为:3;
    (2)∵直线y=kx+b过点A(5,3),点C(9,0),
    ∴,
    ∴,
    即直线y=kx+b的表达式是y=﹣x+,
    设平移后的直线解析式是y=﹣x+m,
    把(6,2)代入得,2=﹣+m,解得m=,则﹣=,
    把(6,1)代入得,1=﹣+m,解得m=,则﹣=,
    由图象可知,将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围≤n<.
    故答案为:≤n<.
    【点睛】
    本题考查了一次函数图象与几何变换、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.
    2、
    【解析】
    【分析】
    由两个一次函数的图象平行求解 再把(2,3)代入函数的解析式求解即可.
    【详解】
    解: 直线y=kx+b(k≠0)的图像与直线y=-2x平行,

    把点(2,3)代入中,

    解得:
    所以一次函数的解析式为:
    故答案为:
    【点睛】
    本题考查的是利用待定系数法求解二次函数的解析式,掌握“两直线平行,两个一次函数的比例系数相等,而不相等”是解本题的关键.
    3、-2
    【解析】
    【分析】
    由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k+1,即可得出k值.
    【详解】
    解:∵正比例函数的图象经过点(1,-1),
    ∴-1=k+1,
    ∴k=-2.
    故答案为:-2.
    【点睛】
    本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.
    4、 kx+b k b
    【解析】

    5、
    【解析】
    【分析】
    根据一次函数的平移规律:“上加下减常数项,左加右减自变量”,可知将函数沿着y轴向上平移2个单位长度,就是给原一次函数常数项后加2,化简后即可得到答案.
    【详解】
    根据一次函数的平移规律:“上加下减常数项,左加右减自变量”,可知将函数沿着y轴向上平移2个单位长度,就是给原一次函数常数项后加2,则变化后的函数解析式应变为:,化简后结果为: ,
    故答案为:.
    【点睛】
    本题考查一次函数的图像变化与函数解析式变化之间的规律,熟练掌握并应用变化规律是解决本题的关键.
    三、解答题
    1、 (1)
    (2),
    (3)或
    【解析】
    【分析】
    (1)由一次函数图象平移的性质得到k=2,再将点代入求出解析式;
    (2)分别求出y=0及x=0时的对应值,即可得到A、两点坐标;
    (3)由结合三角形的面积公式得到AP=2AO,即可得到点P坐标.
    (1)
    解:设一次函数的解析式为,
    一次函数图象与直线平行,

    过点,
    ∴,

    一次函数解析式为;
    (2)
    解:把代入得,,


    把x=0代入得,,

    (3)
    解:∵,,
    AP=2AO=2,
    -1-2=-3,-1+2=1,
    或.
    【点睛】
    此题考查了一次函数平移的性质,一次函数图象与坐标轴的交点坐标,一次函数与图形面积问题,正确掌握一次函数的综合知识是解题的关键.
    2、 (1)见解析
    (2)直线l1与l2不相交
    【解析】
    【分析】
    (1)将所给点代入直线中,看等式是否成立,再判断该点是否在直线上;
    (2)求出解析式与比较,发现系数相同,故不可能相交.
    【详解】
    (1)把x=﹣2代入y=mx+2m﹣3得,y=﹣2m+2m﹣3=﹣3,
    ∴点(﹣2,﹣3)在直线l2上;
    (2)∵直线l1经过原点与点P(m,2m),
    ∴直线l1为y=2x,
    当m=2时,则直线l2:y=2x+1,
    ∵x的系数相同,
    ∴直线l1与l2不相交.
    【点睛】
    本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.
    3、 (1)A种产品生产400件,B种产品生产200件
    (2)A种产品生产1000件时,利润最大为460000元
    【解析】
    【分析】
    (1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;
    (2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.
    (1)
    解:设A种产品生产x件,则B种产品生产(600-x)件,
    由题意得:,
    解得:x=400,
    600-x=200,
    答:A种产品生产400件,B种产品生产200件.
    (2)
    解:设A种产品生产x件,总利润为w元,由题意得:

    由,
    得:,
    因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.
    【点睛】
    本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
    4、 (1)直线为;
    (2)①当时,整点个数为1个,为;②的取值范围为或
    【解析】
    【分析】
    (1)根据待定系数法求得即可;
    (2)①当k=1时代入点A坐标即可求出直线解析式,进而分析出整点个数;
    ②当k<0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k的值;当k>0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k的值,根据图形即可求得k的取值范围.
    (1)
    解:直线过点.

    直线为.
    (2)
    解:①当时,,把代入得,
    解得:,

    如图1,

    区域内的整点个数为1个,为.
    ②如图2,若,

    当直线过,时,.
    当直线过,时,.

    如图3,若,

    当直线过,时,.
    当直线过,时,.

    综上,若区域内的整点恰好为2个,的取值范围为或.
    【点睛】
    此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.
    5、 (1)10,4
    (2)15.2秒
    (3)17.5
    【解析】
    【分析】
    (1)由 12秒和20秒水槽内水面的高度可求正立方体的棱长;设注水的速度为xcm3/s,圆柱的底面积为scm2,得到关于x、s的二元一次方程组,可得到水槽的底面面积,即可求解;
    (2)根据A(12、10)、B(28、20)求出线段AB的解析式,把y=12代入解析式,即可求解;
    (3)根据水槽内水面的高度下降得体积为正立方体的体积,求出水槽内水面的高度下降,即可得答案.
    (1)
    解:由图2得:

    ∵12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,
    ∴正立方体的棱长为10cm;
    由图2可知,圆柱体一半注满水需要28-12=16 (秒),故如果将正方体铁块取出,又经过16-12=4 (秒)恰好将水槽注满,正方体的体积是103=1000cm3,
    设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:

    解得:
    ∴水槽的底面面积为400cm2,
    ∵正立方体的棱长为10cm,
    ∴正立方体的底面正方形的面积=10×10=100 cm2,
    ∴S1:S2=400:100=4:1
    (2)
    设线段AB的解析式为y=kx+b(k≠0),将A(12、10)、B(28、20)代入得:,
    解得:
    ∴y=x+,
    当y=12时,x+b=12,
    解得:x=15.2,
    ∴注水时间是15.2秒;
    (3)
    ∵正立方体的铁块全部拉出水面,水槽内水面的高度下降,
    设正立方体的铁块全部拉出水面,水槽内水面的高度下降acm,根据题意得:400a=1000,a=2.5,所以铁块完全拉出时,水面高度为20-2.5=17.5cm.
    【点睛】
    本题考查了正立方体的体积、圆柱的体积、一次函数的应用,做题的关键是利用函数的图象获取正确信息是解题的关键.

    相关试卷

    初中第二十章 函数综合与测试巩固练习:

    这是一份初中第二十章 函数综合与测试巩固练习,共19页。试卷主要包含了函数中,自变量x的取值范围是,在函数中,自变量x的取值范围是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共28页。试卷主要包含了已知一次函数y=等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共30页。试卷主要包含了若直线y=kx+b经过一,,两地相距80km,甲等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map