搜索
    上传资料 赚现金
    英语朗读宝

    难点解析冀教版八年级数学下册第二十一章一次函数定向训练试卷(含答案详解)

    难点解析冀教版八年级数学下册第二十一章一次函数定向训练试卷(含答案详解)第1页
    难点解析冀教版八年级数学下册第二十一章一次函数定向训练试卷(含答案详解)第2页
    难点解析冀教版八年级数学下册第二十一章一次函数定向训练试卷(含答案详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共29页。试卷主要包含了若一次函数等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数定向训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是( )
    A. B.
    C. D.
    2、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )
    A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能
    3、在平面直角坐标系中,已知点,点,在x轴上确定点C,使得的周长最小,则点C的坐标是( )
    A. B. C. D.
    4、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为(  )
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    ﹣1
    0
    1
    2
    3

    y2

    ﹣5
    ﹣3
    ﹣1
    1
    3

    A. B. C. D.
    5、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )

    A.甲队的挖掘速度大于乙队的挖掘速度
    B.开挖2h时,甲、乙两队所挖的河渠的长度相差8m
    C.乙队在的时段,与之间的关系式为
    D.开挖4h时,甲、乙两队所挖的河渠的长度相等
    6、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为(  )

    A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)
    C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)
    7、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )

    A. B.
    C. D.
    8、如图,直线与x轴交于点B,与y轴交于点C,点,D为线段的中点,P为y轴上的一个动点,连接、,当的周长最小时,点P的坐标为( )

    A. B. C. D.
    9、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
    A.且 B.且
    C.且 D.且
    10、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )

    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
    2、在平面直角坐标系xOy中,点A点B的坐标分别是(4,8),(12,0),则△AOB的重心G的坐标是 _____.
    3、一次函数y=﹣2x+7的图象不经过第 _____象限.
    4、若一次函数y=2x+b的图象经过A(-1,1)则b=____,该函数图象经过点B(1,__)和点C(___,0).
    5、如图,直线y=kx+b交坐标轴于A,B两点,则关于x的不等式kx+b<0的解集是_____.

    三、解答题(5小题,每小题10分,共计50分)
    1、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.
    (1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;
    (2)试比较哪家公司更优惠?说明理由.
    2、如图,在平面角坐标系中,点B在y轴的负半轴上(0,﹣2),过原点的直线OC与直线AB交于C,∠COA=∠OCA=∠OBA=30°

    (1)点C坐标为    ,OC=   ,△BOC的面积为    ,=   ;
    (2)点C关于x轴的对称点C′的坐标为    ;
    (3)过O点作OE⊥OC交AB于E点,则△OAE的形状为    ,请说明理由;
    (4)在坐标平面内是否存在点F使△AOF和△AOB全等,若存在,请直接写出F坐标,请说明理由.
    3、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.

    (1)求k的值;
    (2)求四边形OCNB的面积;
    (3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.
    4、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:

    普通板栗(件)
    精品板栗(件)
    总金额(元)
    甲购买情况
    2
    3
    350
    乙购买情况
    4
    1
    300
    (1)求普通板栗和精品板栗的单价分别是多少元.
    (2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?
    5、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:

    A种产品
    B种产品
    成本价(元/件)
    400
    300
    销售价(元/件)
    560
    450
    (1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?
    (2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?

    -参考答案-
    一、单选题
    1、A
    【解析】

    2、A
    【解析】
    【分析】
    由 可得一次函数的性质为随的增大而增大,从而可得答案.
    【详解】
    解:点和点是一次函数图象上的两点,,
    随的增大而增大,
    即一定为正数,
    故选A
    【点睛】
    本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.
    3、C
    【解析】
    【分析】
    因为AB的长度是确定的,故△CAB的周长最小就是CA+CB的值最小,作点A关于x轴的对称点A′,连接A′B交x轴于点C,求出C点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点C,此时,AC+BC=A′C+BC=AC,长度最小,
    ∵A(-1,2),
    ∴A′(-1,﹣2),
    设直线A′B的解析式为y=kx+b(k≠0),把A′(-1,﹣2),代入得,
    ∴,解得,
    ∴直线A′B的解析式为y=-2x﹣4,
    当y=0时,x=-2,
    ∴C(-2,0).
    故选:C

    【点睛】
    本题考查了轴对称-最短路径问题,一次函数与坐标轴交点问题,解题关键是确定点C的位置,利用一次函数解析式求坐标.
    4、C
    【解析】
    【分析】
    利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.
    【详解】
    解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),
    ∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),
    ∴关于x,y的二元一次方程组的解为.
    故选:C.
    【点睛】
    本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.
    5、D
    【解析】
    【分析】
    根据图象依次分析判断.
    【详解】
    解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;
    开挖2h时,乙队所挖的河渠的长度为30m,
    甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,
    开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;
    由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;
    甲队开挖4h时,所挖河渠的长度为,
    乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;
    故选:D.
    【点睛】
    此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.
    6、B
    【解析】
    【分析】
    根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.
    【详解】
    解:根据题意得,菜园三边长度的和为24m,
    即,
    所以,
    由y>0得,,
    解得,
    当时,即,
    解得,
    ∴,
    故选:B.
    【点睛】
    题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.
    7、C
    【解析】
    【分析】
    由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
    【详解】
    解:令直线中,得到,故,
    令直线中,得到,故,
    由勾股定理可知:,
    ∵,且,
    ∴,,
    过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:

    ∵为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    同理,∵为等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    设直线CD的解析式为:y=kx+b,代入和,
    得到:,解得,
    ∴CD的解析式为:,
    与直线联立方程组,
    解得,故E点坐标为,
    故选:C.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
    8、A
    【解析】
    【分析】
    作点关于轴的对称点,连接,交轴于点,则,进而根据对称性求得当点P与重合时,的周长最小,通过求直线的解析式,即可求得点的坐标
    【详解】
    解:如图,作点关于轴的对称点,连接,交轴于点,则,连接,

    的周长,点是定点,则的长不变,
    当重合时,的周长最小,
    由,令,令,则

    是的中点

    ,点是关于轴对称的点

    设直线的解析式为:,将,代入,

    解得
    直线的解析式为:
    令,则

    故选A
    【点睛】
    本题考查了轴对称的性质求最值,求一次函数解析式,求直线与坐标轴的交点,求线段中点坐标,掌握根据轴对称的性质求线段和的最值是解题的关键.
    9、D
    【解析】
    【分析】
    根据一次函数图象与系数的关系解答即可.
    【详解】
    解:一次函数、是常数,的图象不经过第三象限,
    且,
    故选:D.
    【点睛】
    本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    10、C
    【解析】
    【分析】
    求出点A、点坐标,求出长即可求出点的坐标.
    【详解】
    解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
    即,,;
    以点为圆心、长为半径画弧,与轴正半轴交于点,
    故,则,
    点C的坐标为;
    故选:C
    【点睛】
    本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
    二、填空题
    1、一次函数
    【解析】

    2、##
    【解析】
    【分析】
    分别求得的中点的坐标,进而求得直线的交点坐标即可求得重心G的坐标.三角形的重心为三角形三条中线的交点.
    【详解】
    解:如图,点A点B的坐标分别是(4,8),(12,0),

    ,
    设直线的解析式为,


    解得
    直线的解析式为
    设直线的解析式为,


    解得
    直线的解析式为,
    则即为的重心

    解得

    故答案为:
    【点睛】
    本题考查了三角形重心的定义,待定系数法求一次函数解析式,中点坐标公式,求两直线解析式,掌握三角形的重心的定义是解题的关键.
    3、三
    【解析】
    【分析】
    先根据一次函数y=﹣2x+7判断出k、b的符号,再根据一次函数的性质进行解答即可.
    【详解】
    解:∵一次函数y=﹣2x+7中,k=﹣2<0,b=7>0,
    ∴此函数的图象经过第一、二、四象限,
    ∴此函数的图象不经过第三象限.
    故答案为:三.
    【点睛】
    本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
    4、 3 5
    【解析】

    5、x<-2
    【解析】
    【分析】
    根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.
    【详解】
    ∵点A坐标为(-2,0),
    ∴关于x的不等式kx+b<0的解集是x<-2,
    故答案为:x<-2
    【点睛】
    本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.
    三、解答题
    1、 (1)y甲=25x+2 000;y乙=35x
    (2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析
    【解析】
    【分析】
    (1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;
    (2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得
    (1)
    解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),
    依题意得y甲=25x+2 000;y乙=35x;
    (2)
    解:当y甲>y乙时,即25x+2 000>35x,
    解得:x<200;
    当y甲=y乙时,即25x+2 000=35x,
    解得:x=200;
    当y甲<y乙时,即25x+2 000<35x,
    解得:x>200.
    ∴当0<x<200时,选择乙公司更优惠;
    当x=200时,选择两公司费用一样多;
    当x>200时,选择甲公司更优惠.
    【点睛】
    此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.
    2、 (1)(3,),2,3,
    (2)(3,)
    (3)等边三角形,见解析
    (4)存在,(0,)或(0,﹣)或(2,)或(2,﹣).
    【解析】
    【分析】
    (1)先根据等角对等边,确定OB=OC=,再通过构造垂线法,分别求出相关线段的长,根据点所在象限,确定点的坐标;根据面积公式,选择适当的底边计算即可;利用同底的两个三角形面积之比等于对应高之比计算即可;
    (2)根据点关于x轴对称的特点,直接写出坐标即可;
    (3)根据三个角是60°的三角形是等边三角形判定即可;
    (4)利用全等三角形的判定定理,综合运用分类思想求解.
    (1)
    解:(1)∵点B(0,﹣2),
    ∴OB=,
    ∵∠COA=∠OCA=∠OBA=30°,
    ∴OB=OC=,
    过点C作CD⊥x轴于点D,

    ∴CD==,DO==3,
    ∵点C在第一象限;
    ∴C(3,),
    ∴=;
    ∴,
    故答案为:(3,),2,3,.
    (2)
    ∵C(3,),点C与点C'关于x轴对称,
    ∴C'(3,﹣).
    故答案为:(3,﹣).
    (3)
    ∵OE⊥OC,
    ∴∠COE=90°,

    ∵∠COA=30°,
    ∴∠AOE=60°,
    ∵∠OAE=60°,
    ∴∠AOE=∠OAB=60°,
    ∴△OAE是等边三角形,
    故答案为:等边三角形.
    (4)
    解:①如图1,当△AOB≌△AOF时,
    ∵OB=,
    ∴OF=,
    ∴(0,),(0,﹣),

    ②如图2,当△AOB≌OAF时,
    设直线AB的解析式为y=kx+b,
    ∴,
    解得,
    ∴直线AB的解析式为y=x,
    令y=0,得x=2,
    ∴点A的坐标为(2,0),
    ∵△AOB≌OAF,
    ∴OB=AF=,
    ∴F3(2,),F4(2,﹣),

    综上所述,存在点F,且点F的坐标是(0,)或(0,﹣)或(2,)或(2,﹣).
    【点睛】
    本题考查了等角对等边,坐标与象限,勾股定理,点的对称,函数解析式,等边三角形的判定,三角形全等的判定,分类思想,熟练掌握待定系数法,灵活运用三角形全等的判定是解题的关键.
    3、 (1)k=2;
    (2)7;
    (3)≤m≤3
    【解析】
    【分析】
    (1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;
    (2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;
    (3)先求得点P的纵坐标,根据题意列不等式组求解即可.
    (1)
    解:令x=0,则y=2;
    ∴B (0,2),
    ∴OB=2,
    ∵AB=;
    ∴OA=1,
    ∴A (-1,0),
    把B (-1,0)代入y=kx+2得:0=-k+2,
    ∴k=2;
    (2)
    解:∵直线l2平行于直线y=−2x.
    ∴设直线l2的解析式为y=−2x+b.
    把(2,2)代入得2=−22+b,
    解得:b=6,
    ∴直线l2的解析式为.
    令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),
    由(1)得直线l1的解析式为.
    解方程组得:,
    ∴N (1,4),
    四边形OCNB的面积=S△ODC- S△NBD
    =
    =7;
    (3)
    解:∵点P的横坐标为m,
    ∴点P的纵坐标为,
    ∴PM=,
    ∵PM≤3,且点P在线段CD上,
    ∴≤3,且m≤3.
    解得:≤m≤3.
    【点睛】
    本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.
    4、 (1)普通板栗的单价为55元,精品板栗的单价为80元;
    (2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
    【解析】
    【分析】
    (1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;
    (2)加工普通板栗a件,则加工精品板栗(4000-a)件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.
    (1)
    解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:

    解得x=55y=80,
    答:普通板栗的单价为55元,精品板栗的单价为80元;
    (2)
    解:加工普通板栗a件,则加工精品板栗(4000-a)件,
    由题意得:,
    ∵,1000≤a≤3000,
    ∴当时,所获总利润w最多,
    w=-5×1000+80000=75000,
    ∴,
    答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
    【点睛】
    题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.
    5、 (1)A种产品生产400件,B种产品生产200件
    (2)A种产品生产1000件时,利润最大为460000元
    【解析】
    【分析】
    (1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;
    (2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.
    (1)
    解:设A种产品生产x件,则B种产品生产(600-x)件,
    由题意得:,
    解得:x=400,
    600-x=200,
    答:A种产品生产400件,B种产品生产200件.
    (2)
    解:设A种产品生产x件,总利润为w元,由题意得:

    由,
    得:,
    因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.
    【点睛】
    本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试习题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试习题,共23页。试卷主要包含了一次函数y=mx﹣n等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试达标测试:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试达标测试,共29页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题,共33页。试卷主要包含了已知,当时,直线与直线的交点在,如图所示,直线分别与轴等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map