搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度冀教版八年级数学下册第二十二章四边形必考点解析试题(名师精选)

    2021-2022学年度冀教版八年级数学下册第二十二章四边形必考点解析试题(名师精选)第1页
    2021-2022学年度冀教版八年级数学下册第二十二章四边形必考点解析试题(名师精选)第2页
    2021-2022学年度冀教版八年级数学下册第二十二章四边形必考点解析试题(名师精选)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试课堂检测

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试课堂检测,共28页。
    八年级数学下册第二十二章四边形必考点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、菱形ABCD的边长为5,一条对角线长为6,则菱形面积为(  )
    A.20 B.24 C.30 D.48
    2、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )

    A.3 B.6 C. D.
    3、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是( )
    A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.1∶2∶1∶2
    4、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为( )

    A.2 B.3 C.4 D.5
    5、小明想判断家里的门框是否为矩形,他应该( )
    A.测量三个角是否都是直角 B.测量对角线是否互相平分
    C.测量两组对边是否分别相等 D.测量一组对角是否是直角
    6、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形
    C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形
    7、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    8、下列多边形中,内角和与外角和相等的是(  )
    A. B. C. D.
    9、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )

    A.OA=OC,OB=OD B.AB=CD,AO=CO
    C.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD
    10、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )

    A.①②③ B.②③④ C.①②④ D.①④
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.
    2、将矩形纸片ABCD(AB<BC)沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图2):再展开纸片(如图3),则图3中∠FEG的大小是__.

    3、矩形的两边长分别为3 cm和4 cm,则矩形的对角线长为_____.
    4、如图,,矩形的顶点、分别在边、上,当在边上运动时,随之在上运动,矩形的形状保持不变,其中,.在运动过程中:
    (1)斜边中线的长度是否发生变化___(填“是”或“否”);
    (2)点到点的最大距离是___.

    5、如图, 在矩形中, 对角线,相交于点,若,,则的长为_____.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交于点E.AB=6cm,BC=8cm.

    (1)求证AE=EC;
    (2)求阴影部分的面积.
    2、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.

    (1)若,则点,,的坐标分别是(  ),(  ),(  );
    (2)若△是以为底的等腰三角形,
    ①直接写出的值;
    ②若直线与△有公共点,求的取值范围.
    (3)若直线与△有公共点,求的取值范围.
    3、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?

    (1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
    (2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
    (3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
    4、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.

    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
    5、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.

    (1)直接写出点的坐标____________________;
    (2)求、两点的坐标.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.
    【详解】
    解:如图,当BD=6时,

    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=CO,BO=DO=3,
    ∵AB=5,
    ∴AO==4,
    ∴AC=8,
    ∴菱形的面积是:6×8÷2=24,
    故选:C.
    【点睛】
    本题主要考查菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.
    2、B
    【解析】
    【分析】
    连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.
    【详解】
    解:连接,

    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,AC=BD,
    ∵点是AC的中点, ∴,
    ∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,

    ∴,
    ∴是等边三角形,
    ∴∠BAA'=60°,
    ∴∠ACB=30°,
    ∵AB=3, ∴AC=2AB=6,
    ∴.
    即点B与点之间的距离为6.
    故选:B.
    【点睛】
    本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.
    3、D
    【解析】

    4、A
    【解析】
    【分析】
    由正方形1性质和勾股定理得,再由,得,则,即可解决问题.
    【详解】
    解:设大正方形的边长为,
    大正方形的面积是18,





    小正方形的面积,
    故选:A.
    【点睛】
    本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出.
    5、A
    【解析】
    【分析】
    根据矩形的判定方法解题.
    【详解】
    解:A、三个角都是直角的四边形是矩形,
    选项A符合题意;
    B、对角线互相平分的四边形是平行四边形,
    选项B不符合题意,
    C、两组对边分别相等的四边形是平行四边形,
    选项C不符合题意;
    D、一组对角是直角的四边形不是矩形,
    选项D不符合题意;
    故选:A.
    【点睛】
    本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.
    6、A
    【解析】
    【分析】
    根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
    【详解】
    解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
    B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
    C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
    D、有三个角是直角的四边形是矩形,所以该选项不正确.
    故选:A.
    【点睛】
    本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
    7、A
    【解析】
    【分析】
    利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出 S▱AEFD,判断④.
    【详解】
    解:∵AB=3,AC=4,32+42=52,
    ∴AB2+AC2=BC2,
    ∴△ABC是直角三角形,∠BAC=90°,
    ∴AB⊥AC,故①正确;
    ∵△ABD,△ACE都是等边三角形,
    ∴∠DAB=∠EAC=60°,
    ∴∠DAE=150°,
    ∵△ABD和△FBC都是等边三角形,
    ∴BD=BA,BF=BC,
    ∴∠DBF=∠ABC,
    在△ABC与△DBF中,

    ∴△ABC≌△DBF(SAS),
    ∴AC=DF=AE=4,
    同理可证:△ABC≌△EFC(SAS),
    ∴AB=EF=AD=3,
    ∴四边形AEFD是平行四边形,故②正确;
    ∴∠DFE=∠DAE=150°,故③正确;
    过A作AG⊥DF于G,如图所示:
    则∠AGD=90°,
    ∵四边形AEFD是平行四边形,
    ∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,
    ∴AG=AD=,
    ∴S▱AEFD=DF•AG=4×=6;故④错误;
    ∴错误的个数是1个,
    故选:A.

    【点睛】
    此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.
    8、B
    【解析】
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.
    【详解】
    解:设所求多边形的边数为n,根据题意得:
    (n-2)•180°=360°,
    解得n=4.
    故选:B.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.
    9、B
    【解析】

    10、C
    【解析】
    【分析】
    利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
    【详解】
    ∵CM、BN分别是高
    ∴△CMB、△BNC均是直角三角形
    ∵点P是BC的中点
    ∴PM、PN分别是两个直角三角形斜边BC上的中线

    故①正确
    ∵∠BAC=60゜
    ∴∠ABN=∠ACM=90゜−∠BAC=30゜
    ∴AB=2AN,AC=2AM
    ∴AN:AB=AM:AC=1:2
    即②正确
    在Rt△ABN中,由勾股定理得:
    故③错误
    当∠ABC=60゜时,△ABC是等边三角形
    ∵CM⊥AB,BN⊥AC
    ∴M、N分别是AB、AC的中点
    ∴MN是△ABC的中位线
    ∴MN∥BC
    故④正确
    即正确的结论有①②④
    故选:C
    【点睛】
    本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
    二、填空题
    1、6
    【解析】
    【分析】
    利用多边形的外角和以及多边形的内角和定理即可解决问题.
    【详解】
    解:多边形的外角和是360度,多边形的内角和是外角和的2倍,
    则内角和是720度,

    这个多边形的边数为6.
    故答案为:6.
    【点睛】
    本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.
    2、22.5°
    【解析】
    【分析】
    根据折叠的性质可知,∠A=∠EFB=90°,AB=BF,以及纸片ABCD为矩形可得,∠AEF为直角,进而可以判断四边形ABFE为正方形,进而通过∠AEB,∠BEG的角度计算出∠FEG的大小.
    【详解】
    解:由折叠可知△AEB≌△FEB,
    ∴∠A=∠EFB=90°,AB=BF,
    ∵纸片ABCD为矩形,
    ∴AE∥BF,
    ∴∠AEF=180°-∠BFE=90°,
    ∵AB=BF,∠A=∠AEF=∠EFB=90°,
    ∴四边形ABFE为正方形,
    ∴∠AEB=45°,
    ∴∠BED=180°-45°=135°,
    ∴∠BEG=135°÷2=67.5°,
    ∴∠FEG=67.5°-45°=22.5°.
    【点睛】
    本题考查折叠的性质,矩形的性质,正方形的判定与性质,以及平行的相关性质,能够将正方形与矩形的性质相结合是解决本题的关键.
    3、5cm
    【解析】

    4、 否
    【解析】
    【分析】
    (1)设斜边中点为,根据直角三角形斜边中线即可;
    (2)取的中点,连接、、,根据三角形的任意两边之和大于第三边可知当、、Q三点共线时,点到点的距离最大,再根据勾股定理列式求出的长,根据直角三角形斜边上的中线等于斜边的一半求出的长,两者相加即可得解.
    【详解】
    解:(1)如图,设斜边中点为,在运动过程中,斜边中线
    长度不变,故不变,
    故答案为:否;
    (2)连接、、,在矩形的运动过程当中,根据三角形的任意两边之和大于第三边有,
    当、、三点共线时,则有,此时,取得最大值,如图所示,
    为中点,

    又,


    故答案为:.

    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点、Q、三点共线时,点到点的距离最大是解题的关键.
    5、8
    【解析】
    【分析】
    由四边形为矩形,根据矩形的对角线互相平分且相等,可得,由,根据有一个角为的等腰三角形为等边三角形可得三角形为等边三角形,根据等边三角形的每一个角都相等都为可得出为,在直角三角形中,根据直角三角形的两个锐角互余可得为,根据角所对的直角边等于斜边的一半,由的长可得出的长.
    【详解】
    解:四边形为矩形,
    ,,且,,

    又,
    为等边三角形,

    在直角三角形中,,,


    则.
    故答案为:8.
    【点睛】
    此题考查了矩形的性质,等边三角形的判定与性质,以及含角直角三角形的性质,熟练掌握矩形的性质是解觉本题的关键.
    三、解答题
    1、 (1)证明见解析
    (2)
    【解析】
    【分析】
    (1)先根据折叠的性质可得,再根据矩形的性质、平行线的性质可得,从而可得,然后根据等腰三角形的判定即可得证;
    (2)设,从而可得,先在中,利用勾股定理可得的值,再利用三角形的面积公式即可得.
    (1)
    证明:由折叠的性质得:,
    四边形是长方形,




    (2)
    解:四边形是长方形,

    设,则,
    在中,,即,
    解得,
    即,
    则阴影部分的面积为.
    【点睛】
    本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.
    2、 (1)-3,3,1,3,-3,-1
    (2)①-2;②
    (3)或
    【解析】
    【分析】
    (1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
    (2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
    ②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
    (3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
    (1)
    解:,,
    ,轴.
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向左平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向右平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    对角线的中点与的中点重合,
    的中点为,,

    故答案为:,,;
    (2)
    解:①如图,若△是以为底的等腰三角形,

    四边形,,是平行四边形,
    ,,,
    、、在同一直线上,、、在同一直线上,,
    是等腰三角形△的中位线,
    ,,
    ,,,


    ②由①得,
    ,.
    当直线过点时,,解得:,
    当直线过点时,,解得:,
    的取值范围为;
    (3)
    解:如图,,,,
    ,.

    连接、交于点,
    四边形是平行四边形,
    点、关于点对称,

    直线与△有公共点,
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    综上,的取值范围为或.
    【点睛】
    本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
    3、 (1)=
    (2)∠P=90°-∠A
    (3)∠P=180°-∠BAD-∠CDA,探究见解析
    【解析】
    【分析】
    (1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
    (2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
    (3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
    (1)
    ∠DBC+∠ECB-∠A=180°,
    理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
    ∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
    ∴∠DBC+∠ECB-∠A=180°,
    故答案为:=;
    (2)
    ∠P=90°-∠A,
    理由是:∵BP平分∠DBC,CP平分∠ECB,
    ∴∠CBP=∠DBC,∠BCP=∠ECB,
    ∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
    ∵∠DBC+∠ECB=180°+∠A,
    ∴∠P=180°-(180°+∠A)=90°-∠A.
    故答案为:∠P=90°-∠A,
    (3)
    ∠P=180°-∠BAD-∠CDA,
    理由是:如图,

    ∵∠EBC=180°-∠1,∠FCB=180°-∠2,
    ∵BP平分∠EBC,CP平分∠FCB,
    ∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
    ∴∠3+∠4=180°-(∠1+∠2),
    ∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
    又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
    ∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
    【点睛】
    本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
    4、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
    5、 (1)(10,8)
    (2)D(0,5),E(4,8)
    【解析】
    【分析】
    (1)根据,,可得点的坐标;
    (2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;
    (1)
    解:∵,,
    ∴点的坐标(10,8),
    故答案为:(10,8);
    (2)
    解:依题意可知,折痕AD是四边形OAED的对称轴,
    在Rt△ABE中,AE=AO=10,AB=OC=8,
    由勾股定理,得BE= =6,
    CE=BC-BE=10-6=4,E(4,8).
    在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,
    又∵DE=OD,CD=8-OD,
    (8-OD)2+42=OD2,
    解得OD=5,D(0,5).
    所以D(0,5),E(4,8);
    【点睛】
    本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.

    相关试卷

    数学第二十二章 四边形综合与测试精练:

    这是一份数学第二十二章 四边形综合与测试精练,共23页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。

    数学冀教版第二十二章 四边形综合与测试巩固练习:

    这是一份数学冀教版第二十二章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列命题不正确的是,已知等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试课后练习题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试课后练习题,共28页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map