搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专项练习试题(无超纲)

    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专项练习试题(无超纲)第1页
    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专项练习试题(无超纲)第2页
    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专项练习试题(无超纲)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试复习练习题

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试复习练习题,共27页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在下列条件中,不能判定四边形是平行四边形的是(            A.ABCDADBC B.ABCDADBCC.ABCDABCD D.ABCDADBC2、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是(  )A.矩形 B.菱形 C.正方形 D.梯形3、如图,EF分别是正方形ABCD的边CDBC上的点,且AFBE相交于点G,下列结论中正确的是(       ;②;③;④A.①②③ B.①②④ C.①③④ D.②③④4、如图,已知正方形的边长为4,是对角线上一点,于点于点,连接.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个(     A.3 B.4 C.5 D.65、一个多边形的每个内角均为150°,则这个多边形是(       A.九边形 B.十边形 C.十一边形 D.十二边形6、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,(   )A.1 B. C. D.7、下列命题不正确的是(       A.三边对应相等的两三角形全等B.若,则C.有一组对边平行、另一组对边相等的四边形是平行四边形D.的三边为abc,若,则是直角三角形.8、如图,在ABCD中,点E在边BC上,连接AEEMAE,垂足为E,交CD于点MAFBC,垂足为FBHAE,垂足为H,交AF于点N,连接ACNE.若AE=BNAN=CE,则下列结论中正确的有(       )个.;②是等腰直角三角形;③是等腰直角三角形;④;⑤A.1 B.3 C.4 D.59、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线ly=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为(  )A.7 B.6 C.4 D.810、如图,在正方形ABCD中,AB=3,点EF分别在边ABCD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为(       A.1 B. C. D.2第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、四边形ABCD中,ADBC,要使它平行四边形,需要增加条件________(只需填一个 条件即可).2、如图,正方形中,上一动点(不含,连接,过,过,连接.下列结论:①;②;③平分;④,正确的是__(填序号).3、五边形内角和为__________.4、过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.5、中,已知ABCD=4,BC=6,则当AD=________时,四边形ABCD是平行四边形.三、解答题(5小题,每小题10分,共计50分)1、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DGDF(1)若∠BAE=50°,求∠DGF的度数;(2)求证:DFDC2、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.3、如图,已知正方形ABCD,点E在边BC上,连接AE(1)尺规作图:作,使,点F的边与线段AB的交点.(不写作法,保留作图痕迹);(2)探究:AEDF的位置关系和数量关系,并说明理由.4、已知:如图,在ABCD中,AEBC,点EF分别为垂足.(1)求证:ABE≌△CDF(2)求证:四边形AECF是矩形.5、如图,在平行四边形ABCD中,点MAD边的中点,连接BMCM,且BMCM(1)求证:四边形ABCD是矩形;(2)若△BCM是直角三角形,直接写出ADAB之间的数量关系. -参考答案-一、单选题1、D【解析】2、B【解析】【分析】根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.【详解】展得到的图形如上图,由操作过程可知:AB=CDBC=AD∴四边形ABCD是平行四边形,ACBD∴四边形ABCD为菱形,故选:B.【点睛】本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.3、B【解析】【分析】根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.【详解】解:四边形ABCD是正方形,中,,①正确;,②正确;GFBG的数量关系不清楚,无法得AGGE的数量关系,③错误;,④正确;综上可得:①②④正确,故选:B.【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.4、D【解析】【分析】如图,过点于点,连接,可说明四边形为矩形,是等腰直角三角形,;①中可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④最小时,最小,即时,最小,计算即可;⑤在中,勾股定理求得将线段等量替换求解即可;⑥如图1,延长交于点,证明,得进而可说明【详解】解:如图,过点于点,连接由题意知∴四边形为平行四边形∴四边形为矩形是等腰直角三角形①∵为等腰直角三角形∴四边形是平行四边形正确;②∵∴四边形为矩形四边形的周长正确;四边形为矩形∵在正确;最小时,最小∴当时,即时,的最小值等于正确;中,正确;⑥如图1,延长交于点 ∵在正确;综上,①②③④⑤⑥正确,故选:【点睛】本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.5、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,故选:D.【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.6、C【解析】【分析】证明,则,计算的长,得,证明是等腰直角三角形,可得的长.【详解】解:四边形是正方形,是等腰直角三角形,故选:C.【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.7、C【解析】【分析】根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.【详解】解:A、三边对应相等的两三角形全等,此命题正确,不符题意;B、若,则,此命题正确,不符题意;C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;D、的三边为,若,即,则是直角三角形,此命题正确,不符题意;故选:C.【点睛】本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.8、C【解析】【分析】证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAFAAS),得出BF=AFNF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.【详解】解:∵BHAEAFBCAEEM∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC在△NBF和△EAF中,∴△NBF≌△EAFAAS);BF=AFNF=EF∴∠ABC=45°,∠ENF=45°,∴△NFE是等腰直角三角形,故③正确;∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC∴∠ANB=∠CEA在△ANB和△CEA中,∴△ANB≌△CEASAS),故①正确;AN=CENF=EFBF=AF=FC又∵AFBC,∠ABC=45°,∴△ABC是等腰直角三角形,故②正确;ABCD中,CDAB,且△ABC、△NFE都是等腰直角三角形,∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,∴∠ANE=∠BCD=135°,在△ANE和△ECM中,∴△ANE≌△ECMASA),故④正确;CM=NE又∵NF=NE=MCAF=MC+ECAD=BC=2AF=MC+2EC,故⑤错误.综上,①②③④正确,共4个,故选:C【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.9、A【解析】【分析】如图所示,连接ACOB交于点D,先求出C和A的坐标,然后根据矩形的性质得到DAC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.【详解】解:如图所示,连接ACOB交于点DC是直线y轴的交点,∴点C的坐标为(0,2),OA=4,A点坐标为(4,0),∵四边形OABC是矩形,DAC的中点,D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为故选A.【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.10、D【解析】【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=xAE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.【详解】解:∵四边形ABCD是正方形,ABCD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E∴∠AEB'=180°-∠BEF-∠FEB'=60°,B'E=2AEBE=x,则B'E=xAE=3-x∴2(3-x)=x解得x=2.故选:D.【点睛】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.二、填空题1、AD=BC【解析】2、①②④【解析】【分析】连接,延长于点.可证,进而可得,由此可得出;再由,即可得出;连接于点,则,证明,即可得出,进而可得;过点于点,交于点,由于是动点,的长度不确定,而是定值,即可得出不一定平分【详解】解:如图,连接,延长于点为正方形的对角线故①正确;是等腰直角三角形故②正确;连接于点,则故④正确.过点于点,交于点是动点的长度不确定,而是定值不一定等于不一定平分故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.3、540°【解析】【分析】根据n边形的内角和公式(n-2)·180°求解即可.【详解】解:五边形内角和为(5-2)×180°=540°,故答案为:540°.【点睛】本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.4、9【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:由题意得,n-2=7,解得:n=9,即这个多边形是九边形.故答案为:9.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n5、6【解析】三、解答题1、 (1)∠DGF=25°;(2)见解析【解析】【分析】(1)由旋转的性质得出AB=AEAD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;(2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.(1)解:由旋转得AB=AEAD=AG,∠BAD=∠EAG=∠AGF=90°,∴∠BAE=∠DAG=50°,∴∠AGD=∠ADG==65°,∴∠DGF=90°-65°=25°;(2)证明:连接AF由旋转得矩形AEFG≌矩形△ABCDAF=BD,∠FAE=∠ABE=∠AEBAFBD∴四边形ABDF是平行四边形,DF=AB=DC【点睛】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.2、150°【解析】【分析】先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.【详解】解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,∴∠ADC=180°-∠ADE=55°,∵∠A+∠B+∠C+∠ADE=360°,∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.【点睛】此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.3、 (1)见解析;(2),见解析【解析】【分析】(1)根据题意作出即可;(2)证明即可得结论.(1)如图,即为所求.(2)∵四边形ABCD是正方形,中, AAS),,即【点睛】本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键.4、 (1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行四边形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理(定理)即可得证;(2)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据矩形的判定即可得证.(1)证明:四边形是平行四边形,中,(2)证明:四边形是平行四边形,在四边形中,四边形是矩形.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.5、 (1)见解析(2)AD=2AB,理由见解析【解析】【分析】(1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;(2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.(1)证明:∵点MAD边的中点,AM=DM∵四边形ABCD是平行四边形,AB=DCABCD在△ABM和△DCM中,∴△ABM≌△DCMSSS),∴∠A=∠DABCD∴∠A+∠D=180°,∴∠A=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:ADAB之间的数量关系:AD=2AB,理由如下:∵△BCM是直角三角形,BM=CM∴△BCM是等腰直角三角形,∴∠MBC=45°,由(1)得:四边形ABCD是矩形,ADBC,∠A=90°,∴∠AMB=∠MBC=45°,∴△ABM是等腰直角三角形,AB=AM∵点MAD边的中点,AD=2AMAD=2AB【点睛】本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键. 

    相关试卷

    2021学年第二十二章 四边形综合与测试巩固练习:

    这是一份2021学年第二十二章 四边形综合与测试巩固练习,共35页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试复习练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试复习练习题,共26页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试同步测试题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试同步测试题,共24页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map