冀教版八年级下册第二十二章 四边形综合与测试同步练习题
展开这是一份冀教版八年级下册第二十二章 四边形综合与测试同步练习题,共25页。
八年级数学下册第二十二章四边形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是( )
A.菱形 B.矩形 C.直角梯形 D.等腰梯形
2、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )
A.线段的长逐渐增大 B.线段的长逐渐减少
C.线段的长不变 D.线段的长先增大后变小
3、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是( )
A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.1∶2∶1∶2
4、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是( )
A.360° B.900° C.1440° D.1800°
5、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积( )
A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变
6、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.
其中说法正确的是( )
A.②③ B.①②③ C.②④ D.①②④
7、下面性质中,平行四边形不一定具备的是( )
A.对角互补 B.邻角互补
C.对角相等 D.对角线互相平分
8、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形
C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形
9、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )
A.2 B. C. D.
10、如图,在中,DE平分,,则( )
A.30° B.45° C.60° D.80°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,平行四边形ABCD中,BD为对角线,,BE平分交DC于点E,连接AE,若,则为______度.
2、在Rt中,,CD是斜边AB上的中线,已知,,则的周长等于______.
3、如图,AC是正五边形ABCDE的对角线,则为______度.
4、三角形的各边长分别是8、10、12、则连接各边中点所得的三角形的周长是___.
5、如图,正方形ABCD的边长为4,E是BC的中点,在对角线BD上有一点P,则PC+PE的最小值是_______.
三、解答题(5小题,每小题10分,共计50分)
1、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.
(1)请证明“射影定理”中的结论③.
(2)【结论运用】如图2,正方形的边长为6,点O是对角线、的交点,点E在上,过点C作,垂足为F,连接.
①求证:.
②若,求的长.
2、已知正方形与正方形,,.
(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
3、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.
(1)如图1,若,,求CD的长;
(2)如图2,若G为EF上一点,且,求证:.
4、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.
5、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.
(1)若∠BAE=50°,求∠DGF的度数;
(2)求证:DF=DC.
-参考答案-
一、单选题
1、B
【解析】
【分析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可.
【详解】
解:∵E是AC中点,
∴AE=EC,
∵DE=EF,
∴四边形ADCF是平行四边形,
∵AD=DB,AE=EC,
∴DE=BC,
∴DF=BC,
∵CA=CB,
∴AC=DF,
∴四边形ADCF是矩形;
故选:B.
【点睛】
本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.
2、C
【解析】
【分析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
【详解】
解:连接.
、分别是、的中点,
为的中位线,
,为定值.
线段的长不改变.
故选:.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
3、D
【解析】
略
4、C
【解析】
【分析】
设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.
【详解】
解:设每一个外角都为x,则相邻的内角为4x,
由题意得,4x+x=180°,
解得:x=36°,
多边形的外角和为360°,
360°÷36°=10,
所以这个多边形的边数为10,
则该多边形的内角和是:(10﹣8)×180=1440°.
故选:C.
【点睛】
本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.
5、D
【解析】
【分析】
连接AE,根据,推出,由此得到答案.
【详解】
解:连接AE,
∵,
∴,
故选:D.
.
【点睛】
此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.
6、B
【解析】
【分析】
根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.
【详解】
如图所示,
∵△ABC是直角三角形,
∴根据勾股定理:,故①正确;
由图可知,故②正确;
由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,
列出等式为,
即,故③正确;
由可得,
又∵,
两式相加得:,
整理得:,
,故④错误;
故正确的是①②③.
故答案选B.
【点睛】
本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.
7、A
【解析】
【分析】
直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.
【详解】
解:A、平行四边形对角不一定互补,故符合题意;
B、平行四边形邻角互补正确,故不符合题意;
C、平行四边形对角相等正确,故不符合题意.
D、平行四边形的对角线互相平分正确,故不符合题意;
故选A.
【点睛】
此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.
8、A
【解析】
【分析】
根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
【详解】
解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
D、有三个角是直角的四边形是矩形,所以该选项不正确.
故选:A.
【点睛】
本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
9、B
【解析】
【分析】
先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴△ABD和△BCD是等腰直角三角形,
如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,
由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
∴重叠部分的四边形D'EBF为平行四边形,
设DD'=x,则D'C=6-x,D'E=x,
∴S▱D'EBF=D'E•D'C=(6-x)x=4,
解得:x=3+或x=3-,
故选:B.
【点睛】
本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
10、C
【解析】
【分析】
根据平行四边形的性质得,故,由DE平分得,即可计算.
【详解】
∵四边形ABCD是平行四边形,
∴,
∴,
∵DE平分,
∴,
∴.
故选:C.
【点睛】
本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.
二、填空题
1、22
【解析】
【分析】
先根据平行四边形的性质可得,从而可得,再根据等边三角形的判定证出是等边三角形,根据等边三角形的性质可得,从而可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质即可得.
【详解】
解:平行四边形中,,
,
,
,
平分,
,
是等边三角形,
,
,
在和中,,
,
,
故答案为:22.
【点睛】
本题考查了平行四边形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.
2、##
【解析】
【分析】
过点作,根据直角三角形斜边上的中线等于斜边的一半,可得,根据等腰三角形的三线合一可得,中位线的性质求得,根据勾股定理求得,继而求得的周长.
【详解】
解:如图,过点作
在Rt中,,CD是斜边AB上的中线,
为的中点,
又为的中点,则
在中,
的周长等于
故答案为:
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半,三线合一,中位线的性质与判定,勾股定理,掌握以上知识是解题的关键.
3、72
【解析】
【分析】
先根据正五边形的内角和求出它的每个内角的度数,再根据等腰三角形的性质可得的度数,然后根据角的和差即可得.
【详解】
解:五边形是正五边形,
,
,
,
故答案为:72.
【点睛】
本题考查了正多边形的性质、等腰三角形的性质等知识点,熟练掌握正多边形的性质是解题关键.
4、15
【解析】
【分析】
由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
【详解】
解:如图,D,E,F分别是△ABC的三边的中点,
则DE=AC,DF=BC,EF=AB,
∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=×(8+10+12)cm=15cm.
故答案为15.
【点睛】
本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半是解题的关键.
5、
【解析】
【分析】
要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.
【详解】
解:如图,连接AE,PA,
∵四边形ABCD是正方形,BD为对角线,
∴点C关于BD的对称点为点A,
∴PE+PC=PE+AP,
根据两点之间线段最短可得AE就是AP+PE的最小值,
∵正方形ABCD的边长为4,E是BC边的中点,
∴BE=2,
∴AE=,
故答案为:.
【点睛】
本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.
三、解答题
1、 (1)见解析;
(2)①见解析;②.
【解析】
【分析】
(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;
(2)①由“射影定理”分别解得,,整理出,再结合即可证明;
②由勾股定理解得,再根据得到,代入数值解题即可.
(1)
证明:
(2)
①四边形ABCD是正方形
②在中,
在,
.
【点睛】
本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.
2、 (1)
(2)
(3)
(4)
3、 (1)7
(2)见解析
【解析】
【分析】
(1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
(2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
(1)
解:在中,AB∥CD,AB=CD,
∴∠EBF=∠CFB,
∵FB平分,
∴∠EFB=∠CFB,
∴∠EFB=∠EBF,
∴BE=EF=5,
∵AE=2,
∴CD=AB=AE+BE=7;
(2)
证明:如图,再CF上截取FN=FG,
∵,
∴ ,
∴∠BGF=∠BNF,
∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
∴∠BGF=∠BFN,
∴∠BFN=∠BNF,
∴∠BFD=∠BNC,
∵BC⊥BD,
∴∠CBD=90°,
∵∠BCD=45°,
∴∠BDC=∠BCD=45°,
∴BC=BD,
∴△BDF≌△BCN(AAS),
∴NC=FD,
∴CD=DF+FN+CN=2FD+FG,
∵AB=CD,
∴FG+2FD=AB.
【点睛】
本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
4、150°
【解析】
【分析】
先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.
【详解】
解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,
∴∠ADC=180°-∠ADE=55°,
∵∠A+∠B+∠C+∠ADE=360°,
∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.
【点睛】
此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.
5、 (1)∠DGF=25°;
(2)见解析
【解析】
【分析】
(1)由旋转的性质得出AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;
(2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.
(1)
解:由旋转得AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,
∴∠BAE=∠DAG=50°,
∴∠AGD=∠ADG==65°,
∴∠DGF=90°-65°=25°;
(2)
证明:连接AF,
由旋转得矩形AEFG≌矩形△ABCD,
∴AF=BD,∠FAE=∠ABE=∠AEB,
∴AF∥BD,
∴四边形ABDF是平行四边形,
∴DF=AB=DC.
【点睛】
本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.
相关试卷
这是一份数学八年级下册第二十二章 四边形综合与测试练习,共29页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试习题,共27页。
这是一份数学第二十二章 四边形综合与测试精练,共23页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。