搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专题测评练习题(精选)

    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专题测评练习题(精选)第1页
    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专题测评练习题(精选)第2页
    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专题测评练习题(精选)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试当堂检测题

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试当堂检测题,共28页。试卷主要包含了如图,在正方形ABCD中,点E等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专题测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在中,若,则的度数是( )
    A. B. C. D.
    2、下列命题不正确的是( )
    A.三边对应相等的两三角形全等
    B.若,则
    C.有一组对边平行、另一组对边相等的四边形是平行四边形
    D.的三边为a、b、c,若,则是直角三角形.
    3、下列多边形中,内角和与外角和相等的是(  )
    A. B. C. D.
    4、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )

    A.线段的长逐渐增大 B.线段的长逐渐减少
    C.线段的长不变 D.线段的长先增大后变小
    5、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为(  )

    A.a B.a C.a D.a
    6、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为(  )
    A.120° B.60° C.30° D.15°
    7、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )

    A.1 B.4 C.2 D.6
    8、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为(  )

    A.1 B.2 C. D.2
    9、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是(  )
    A.360° B.900° C.1440° D.1800°
    10、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )

    A.8 B.10 C.12 D.16
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,点M,N分别是的边AB,AC的中点,若,,则______.

    2、如图,矩形中,,,以点为中心,将矩形旋转得到矩形,使得点落在边上,则的度数为__________.

    3、如图,在平行四边形ABCD中,

    (1)若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______.
    (2)若∠A+ ∠C= 200°,则∠A=______ 、∠B=______;
    (3)若∠A:∠B= 5:4,则∠C=______ 、∠D=______.
    4、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O,在正方形外有一点P,,当正方形绕着点O旋转时,则点P到正方形的最短距离d的最大值为______.

    5、如图,在△ABC中,D,E分别是边AB,AC的中点,如果BC=7,那么DE=____.

    三、解答题(5小题,每小题10分,共计50分)
    1、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.

    (1)如图1,CDOB,CD=OA,连接AD,BD.
    ① ;
    ②若OA=2,OB=3,则BD= ;
    (2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
    (3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
    2、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.

    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
    3、如图,在菱形ABDE中,,点C是边AB的中点,点P是对角线AD上的动点(可与点A,D重合),连接PC,PB.已知,若要,求AP的取值范围.丞泽同学所在的学习小组根据学习函数的经验,设AP长为xcm,PC长为,PB长为.分别对函数,随自变量x的变化而变化的规律进行了探究,下面是丞泽同学所在学习小组的探究过程,请补充完整:

    (1)按照表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值,表格中的______;
    x/cm
    0
    1
    2
    3
    4
    5
    6

    1.73
    1.00
    1.00
    a
    2.64
    3.61
    4.58

    3.46
    2.64
    2.00
    1.73
    2.00
    2.64
    3.46
    (2)在同一平面直角坐标系xOy中,请在图中描出补全后的表中各组数值所对应的点,并画出函数的图象;
    (3)结合函数图象,解决问题:当时,估计AP的长度的取值范围是____________;
    请根据图象估计当______时,PC取到最小值.(请保留点后两位)
    4、已知:如图,在▱ABCD中,AE⊥BC,,点E,F分别为垂足.

    (1)求证:△ABE≌△CDF;
    (2)求证:四边形AECF是矩形.
    5、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.

    (1)求证:四边形ABCD是矩形;
    (2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    利用平行四边形的对角相等即可选择正确的选项.
    【详解】
    解:四边形是平行四边形,



    故选:B.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.
    2、C
    【解析】
    【分析】
    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
    【详解】
    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
    B、若,则,此命题正确,不符题意;
    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
    D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
    故选:C.
    【点睛】
    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
    3、B
    【解析】
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.
    【详解】
    解:设所求多边形的边数为n,根据题意得:
    (n-2)•180°=360°,
    解得n=4.
    故选:B.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.
    4、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
    【详解】
    解:连接.

    、分别是、的中点,
    为的中位线,
    ,为定值.
    线段的长不改变.
    故选:.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    5、A
    【解析】
    【分析】
    根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
    【详解】
    解:∵以△ABC的各边的中点为顶点作,
    ∴的周长的周长.
    ∵以各边的中点为顶点作,
    ∴的周长的周长,
    …,
    ∴的周长
    故选:A.
    【点睛】
    本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
    6、A
    【解析】
    【分析】
    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,

    ∴BCAD,
    ∴∠A+∠B=180°,
    把∠A=2∠B代入得:3∠B=180°,
    ∴∠B=60°,
    ∴∠C=120°
    故选:A.
    【点睛】
    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
    7、C
    【解析】

    8、C
    【解析】
    【分析】
    根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=AD,∠BAE=∠ADF=90°,
    在△ABE与△DAF中,

    ∴△ABE≌△DAF(SAS),
    ∴∠ABE=∠DAF,
    ∴∠ABE+∠BAO=∠DAF+∠BAO=90°,
    ∴∠AOB=90°,
    ∵△ABE≌△DAF,
    ∴S△ABE=S△DAF,
    ∴S△ABE-S△AOE=S△DAF-S△AOE,
    即S△ABO=S四边形OEDF=1,
    ∵OA=1,
    ∴BO=2,
    ∴AB=,
    故选:C.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.
    9、C
    【解析】
    【分析】
    设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.
    【详解】
    解:设每一个外角都为x,则相邻的内角为4x,
    由题意得,4x+x=180°,
    解得:x=36°,
    多边形的外角和为360°,
    360°÷36°=10,
    所以这个多边形的边数为10,
    则该多边形的内角和是:(10﹣8)×180=1440°.
    故选:C.
    【点睛】
    本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.
    10、A
    【解析】
    【分析】
    根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
    【详解】
    解:①在长方形纸片ABCD中,AB=12,AD=20,
    ∴BC=AD=20,
    当p与B重合时,BA′=BA=12,
    CA′=BC-BA′=20-12=8,
    ②当Q与D重合时,
    由折叠得A′D=AD=20,
    由勾股定理,得
    CA′==16,
    CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,
    故选:A.
    【点睛】
    本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
    二、填空题
    1、45°##45度
    【解析】
    【分析】
    根据三角形中位线定理得出,进而利用平行线的性质解答即可.
    【详解】
    解:、分别是的边、的中点,


    ,,


    故答案是:.
    【点睛】
    本题考查三角形中位线定理,解题的关键是根据三角形中位线定理得出.
    2、90
    【解析】
    【分析】
    根据旋转的性质和矩形的性质可得CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,由勾股定理可求AC=AC'的长,延长C'B'交BC于点E,连接CC',由勾股定理求出CC'的长,最后由勾股定理逆定理判断是直角三角形即可.
    【详解】
    解:∵将矩形ABCD绕点A按逆时针方向旋转90°,得到矩形AB′C′D′,
    ∴CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,

    延长C'B'交BC于点E,连接CC',如图,

    则四边形是矩形





    ∴是直角三角形

    故答案为:90
    【点睛】
    本题考查勾肥定理、旋转的性质,矩形的性质等知识,解题的关键是掌握旋转变换的性质,
    3、 50° 130° 50° 100° 80° 100° 80°
    【解析】

    4、3
    【解析】
    【分析】
    由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案
    【详解】
    解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,

    ∵正方形ABCD边长为6,O为正方形中心,
    ∴AE=3,∠OAE=45°,OE⊥AB,
    ∴OE=3,
    ∵OP=6,
    ∴d=PE=6-3=3;
    故答案为:3
    【点睛】
    本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.
    5、3.5##72
    【解析】
    【分析】
    根据DE是△ABC的中位线,计算求解即可.
    【详解】
    解:∵D,E分别是边AB,AC的中点
    ∴DE是△ABC的中位线
    ∴DEBC3.5
    故答案为:3.5.
    【点睛】
    本题考查了中位线.解题的关键在于正确的求值.
    三、解答题
    1、 (1)△DCA;
    (2)∠ABO+∠OCE=45°,理由见解析
    (3)
    【解析】
    【分析】
    (1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
    (2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
    (3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
    (1)
    解:①∵CD∥OB,
    ∴∠ACD=∠BOA=90°,
    又∵OB=CA,OA=CD,
    ∴△AOB≌△DCA(SAS);
    故答案为:△DCA;

    ②如图所示,过点D作DR⊥BO交BO延长线于R,
    由①可知△AOB≌△DCA,
    ∴CD=OA=2,AC=OB=3,
    ∵OC⊥OB,DR⊥OB,CD∥OB,
    ∴DR=OC=OA+AC=5(平行线间距离相等),
    同理可得OR=CD=3,
    ∴BR=OB+OR=5,
    ∴;
    故答案为:;

    (2)
    解:∠ABO+∠OCE=45°,理由如下:
    如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
    在△AOB和△WCA中,

    ∴△AOB≌△WCA(SAS),
    ∴AB=AW,∠ABO=∠WAC,
    ∵∠AOB=90°,
    ∴∠ABO+∠BAO=90°,
    ∴∠BAO+∠WAC=90°,
    ∴∠BAW=90°,
    又∵AB=AW,
    ∴∠ABW=∠AWB=45°,
    ∵BE⊥OC,CW⊥OC,
    ∴BE∥CW,
    又∵BE=OA=CW,
    ∴四边形BECW是平行四边形,
    ∴BW∥CE,
    ∴∠WJC=∠BWA=45°,
    ∵∠WJC=∠WAC+∠JCA,
    ∴∠ABO+∠OCE=45°;

    (3)
    解:如图3-1所示,连接AF,
    ∴,

    ∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
    ∵E是OB的中点,BE=OA,
    ∴BE=OE=OA,
    ∴OB=AC=2OA,
    ∵△CFQ是等腰直角三角形,CF=QF,
    ∴∠CFQ=∠CFA=90°,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
    2、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
    3、 (1)
    (2)见解析
    (3)0≤AP≤3,1.50
    【解析】
    【分析】
    (1)证明△PAB为直角三角形,再根据勾股定理得出,而点C是线段AB的中点,即可求解;
    (2)描点绘出函数图象即可;
    (3)观察分析函数图象即可求解.
    (1)
    解:在菱形ABDE中,AB=BD
    ∵,
    ∴,
    ∵AD=6
    当x=AP=3时,则P为AD的中点
    ∴,
    ∴AB=2BP,,
    ∴,
    ∵点C是边AB的中点,
    ∴,即
    (2)
    描点绘出函数图象如下(0≤x≤6)

    (3)
    当PC的长度不大于PB长度时,即y1≤y2,从图象看,此时,0≤x≤3,即0≤AP≤3,
    从图象看,当x大约为1.50时,y1即PC取到最小值;
    故答案为:0≤AP≤3;1.50.
    【点睛】
    本题考查函数的图象,直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.
    4、 (1)证明见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)先根据平行四边形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理(定理)即可得证;
    (2)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据矩形的判定即可得证.
    (1)
    证明:四边形是平行四边形,



    在和中,,

    (2)
    证明:,

    四边形是平行四边形,


    在四边形中,,
    四边形是矩形.
    【点睛】
    本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.
    5、 (1)见解析
    (2)AD=2AB,理由见解析
    【解析】
    【分析】
    (1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;
    (2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.
    (1)
    证明:∵点M是AD边的中点,
    ∴AM=DM,
    ∵四边形ABCD是平行四边形,
    ∴AB=DC,AB∥CD,
    在△ABM和△DCM中,

    ∴△ABM≌△DCM(SSS),
    ∴∠A=∠D,
    ∵AB∥CD,
    ∴∠A+∠D=180°,
    ∴∠A=90°,
    ∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形;
    (2)
    解:AD与AB之间的数量关系:AD=2AB,理由如下:
    ∵△BCM是直角三角形,BM=CM,
    ∴△BCM是等腰直角三角形,
    ∴∠MBC=45°,
    由(1)得:四边形ABCD是矩形,
    ∴AD∥BC,∠A=90°,
    ∴∠AMB=∠MBC=45°,
    ∴△ABM是等腰直角三角形,
    ∴AB=AM,
    ∵点M是AD边的中点,
    ∴AD=2AM,
    ∴AD=2AB.
    【点睛】
    本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试综合训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试综合训练题,共33页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题,共24页。试卷主要包含了如图,在中,DE平分,,则,如图,在正方形ABCD中,点E等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题,共23页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map