搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专项训练试卷(含答案详解)

    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专项训练试卷(含答案详解)第1页
    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专项训练试卷(含答案详解)第2页
    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专项训练试卷(含答案详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试课后作业题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试课后作业题,共32页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
    ①;②;③;④.

    A.①②③ B.①②④ C.①③④ D.②③④
    2、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为(   )

    A.22.5° B.27.5° C.30° D.35°
    3、在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是( )
    A.∠ABC=90° B.AC⊥BD C.AB=CD D.AB∥CD
    4、下列说法正确的是(  )
    A.只有正多边形的外角和为360°
    B.任意两边对应相等的两个直角三角形全等
    C.等腰三角形有两条对称轴
    D.如果两个三角形一模一样,那么它们形成了轴对称图形
    5、正方形具有而矩形不一定具有的性质是( )
    A.四个角相等 B.对角线互相垂直
    C.对角互补 D.对角线相等
    6、如图,菱形ABCD的对角线AC和BD相交于点O,,,E是OB的中点,P是CD的中点,连接PE,则线段PE的长为( )

    A. B. C. D.
    7、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为(  )

    A.7 B.6 C.4 D.8
    8、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为(  )
    A.120° B.60° C.30° D.15°
    9、一个多边形的每个内角均为150°,则这个多边形是( )
    A.九边形 B.十边形 C.十一边形 D.十二边形
    10、在中,若,则的度数是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、平行四边形的判定方法:
    (1)两组对边分别______的四边形是平行四边形
    (2)两组对边分别______的四边形是平行四边形
    (3)两组对角分别______的四边形是平行四边形
    (4)对角线______的四边形是平行四边形
    (5)一组对边______的四边形是平行四边形
    2、如图,已知在△ABC中,D,E分别是AB,AC的中点,F,G分别是AD,AE的中点,且FG=2 cm,则BC的长度是_______ cm.

    3、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下3个结论:①△ADG≌△FDG;②GB=2AG;③S△BEF=.在以上3个结论中,正确的有______.(填序号)

    4、如图,在矩形中,的角平分线交于点,连接,恰好平分,若,则的长为______.

    5、如图,在矩形中,,点在边上,联结.如果将沿直线翻折,点恰好落在线段上,那么 的值为_________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,直线,线段分别与直线、交于点、点,满足.

    (1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)
    (2)求证:四边形为菱形.(请补全下面的证明过程)
    证明:
    ____①____
    垂直平分

    ∴____②____
    ____③____



    ∴四边形是___④_____

    ∴四边形是菱形(______⑤__________)(填推理的依据).
    2、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?

    (1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
    (2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
    (3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
    3、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.

    (1)若,则点,,的坐标分别是(  ),(  ),(  );
    (2)若△是以为底的等腰三角形,
    ①直接写出的值;
    ②若直线与△有公共点,求的取值范围.
    (3)若直线与△有公共点,求的取值范围.
    4、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交于点E.AB=6cm,BC=8cm.

    (1)求证AE=EC;
    (2)求阴影部分的面积.
    5、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.

    (1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
    (2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
    (3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴,,
    在与中,

    ∴,
    ∴,①正确;
    ∵,

    ∴,
    ∴,
    ∴,②正确;
    ∵GF与BG的数量关系不清楚,
    ∴无法得AG与GE的数量关系,③错误;
    ∵,
    ∴,
    ∴,
    即,④正确;
    综上可得:①②④正确,
    故选:B.
    【点睛】
    题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
    2、A
    【解析】
    【分析】
    利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴BC=AD,∠DBC=45°,
    ∵BE=AD,
    ∴BE=BC,
    ∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,
    ∵AC⊥BD,
    ∴∠COE=90°,
    ∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,
    故选:A.
    【点睛】
    本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.
    3、B
    【解析】

    4、B
    【解析】
    【分析】
    选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.
    【详解】
    解:A.所有多边形的外角和为,故本选项不合题意;
    B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;
    C.等腰三角形有1条对称轴,故本选项不合题意;
    D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;
    故选:B.
    【点睛】
    此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.
    5、B
    【解析】

    6、A
    【解析】
    【分析】
    取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得,,可得EH=6,,由勾股定理可求PE的长.
    【详解】
    解:如图,取OD的中点H,连接HP

    ∵四边形ABCD是菱形
    ∴AC⊥BD,AO=CO=4,OB=OD=6
    ∵点H是OD中点,点E是OB的中点,点P是CD的中点
    ∴OH=3,OE=3,,
    ∴EH=6,
    在中,由勾股定理可得:

    故选:A
    【点睛】
    本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.
    7、A
    【解析】
    【分析】
    如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
    【详解】
    解:如图所示,连接AC,OB交于点D,
    ∵C是直线与y轴的交点,
    ∴点C的坐标为(0,2),
    ∵OA=4,
    ∴A点坐标为(4,0),
    ∵四边形OABC是矩形,
    ∴D是AC的中点,
    ∴D点坐标为(2,1),
    当直线经过点D时,可将矩形OABC的面积平分,
    由题意得平移后的直线解析式为,
    ∴,
    ∴,
    故选A.

    【点睛】
    本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
    8、A
    【解析】
    【分析】
    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,

    ∴BCAD,
    ∴∠A+∠B=180°,
    把∠A=2∠B代入得:3∠B=180°,
    ∴∠B=60°,
    ∴∠C=120°
    故选:A.
    【点睛】
    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
    9、D
    【解析】
    【分析】
    先求出多边形的外角度数,然后即可求出边数.
    【详解】
    解:∵多边形的每个内角都等于150°,
    ∴多边形的每个外角都等于180°-150°=30°,
    ∴边数n=360°÷30°=12,
    故选:D.
    【点睛】
    本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.
    10、B
    【解析】
    【分析】
    利用平行四边形的对角相等即可选择正确的选项.
    【详解】
    解:四边形是平行四边形,



    故选:B.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.
    二、填空题
    1、 平行 相等 相等 互相平分 平行且相等
    【解析】

    2、8
    【解析】

    3、①②③
    【解析】
    【分析】
    根据正方形的性质和折叠的性质可得,,于是根据“”判定,再由,,为直角三角形,可通过勾股定理列方程求出,,进而求出的面积.
    【详解】
    解:由折叠可知,,,,

    在和中,

    ,故①正确;

    正方形边长是12,

    设,则,,
    由勾股定理得:,
    即:,
    解得:
    ,,,故②正确;
    ,,故③正确;
    故答案为:①②③.
    【点睛】
    本题考查了翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用这些性质解决问题.
    4、
    【解析】
    【分析】
    根据矩形的性质得,,,根据BE是的角平分线,得,则,,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分则,等量代换得,所以,,即可得.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴,,,
    ∵,BE是的角平分线,
    ∴,
    ∴,
    在中,根据勾股定理得,

    ∵,
    ∴,
    ∵EC平分,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.
    5、
    【解析】
    【分析】
    先根据翻折的性质得出AD′=AD=5,DP=PD′,,然后在Rt△ABF中由勾股定理求出BD′=4,D′C=1,设DP=x,则D′P=x,PC=3-x,在RtCD′P中,由勾股定理求出列方程求出x即可,然后利用三角形的面积公式求出S△ADP和的面积即可.
    【详解】
    解:∵AB=3,BC=5,
    ∴DC=3,AD=5,
    又∵将△ADP折叠使点D恰好落在BC边上的点D′,
    ∴AD′=AD=5,DP=PD′,
    在Rt△ABD′中,AB=3,AD′=5,
    ∴BD′==4,
    ∴D′C=5-4=1,
    设DP=x,则D′P=x,PC=3-x,
    在Rt△CD′P中,D′P2=D′C2+PC2,即x2=12+(3-x)2,解得x=,
    即DP的长为,
    ∵AD=5,
    ∴S△ADP=×DP×AD=××5=,=3×5-=,
    ∴=,
    故答案为:.

    【点睛】
    本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,也考查了矩形的性质以及勾股定理.
    三、解答题
    1、 (1)见解析
    (2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形
    【解析】
    【分析】
    (1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    (2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).
    (1)
    解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    如图所示

    (2)
    证明:,
    ∠2①,
    垂直平分 ,
    ,,
    ∴②△EOC,
    OF③,



    ∴四边形是平行四边形④,

    ∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),
    故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.
    【点睛】
    本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.
    2、 (1)=
    (2)∠P=90°-∠A
    (3)∠P=180°-∠BAD-∠CDA,探究见解析
    【解析】
    【分析】
    (1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
    (2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
    (3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
    (1)
    ∠DBC+∠ECB-∠A=180°,
    理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
    ∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
    ∴∠DBC+∠ECB-∠A=180°,
    故答案为:=;
    (2)
    ∠P=90°-∠A,
    理由是:∵BP平分∠DBC,CP平分∠ECB,
    ∴∠CBP=∠DBC,∠BCP=∠ECB,
    ∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
    ∵∠DBC+∠ECB=180°+∠A,
    ∴∠P=180°-(180°+∠A)=90°-∠A.
    故答案为:∠P=90°-∠A,
    (3)
    ∠P=180°-∠BAD-∠CDA,
    理由是:如图,

    ∵∠EBC=180°-∠1,∠FCB=180°-∠2,
    ∵BP平分∠EBC,CP平分∠FCB,
    ∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
    ∴∠3+∠4=180°-(∠1+∠2),
    ∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
    又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
    ∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
    【点睛】
    本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
    3、 (1)-3,3,1,3,-3,-1
    (2)①-2;②
    (3)或
    【解析】
    【分析】
    (1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
    (2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
    ②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
    (3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
    (1)
    解:,,
    ,轴.
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向左平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向右平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    对角线的中点与的中点重合,
    的中点为,,

    故答案为:,,;
    (2)
    解:①如图,若△是以为底的等腰三角形,

    四边形,,是平行四边形,
    ,,,
    、、在同一直线上,、、在同一直线上,,
    是等腰三角形△的中位线,
    ,,
    ,,,


    ②由①得,
    ,.
    当直线过点时,,解得:,
    当直线过点时,,解得:,
    的取值范围为;
    (3)
    解:如图,,,,
    ,.

    连接、交于点,
    四边形是平行四边形,
    点、关于点对称,

    直线与△有公共点,
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    综上,的取值范围为或.
    【点睛】
    本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
    4、 (1)证明见解析
    (2)
    【解析】
    【分析】
    (1)先根据折叠的性质可得,再根据矩形的性质、平行线的性质可得,从而可得,然后根据等腰三角形的判定即可得证;
    (2)设,从而可得,先在中,利用勾股定理可得的值,再利用三角形的面积公式即可得.
    (1)
    证明:由折叠的性质得:,
    四边形是长方形,




    (2)
    解:四边形是长方形,

    设,则,
    在中,,即,
    解得,
    即,
    则阴影部分的面积为.
    【点睛】
    本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.
    5、 (1)①见解析;②见解析
    (2)是,见解析
    (3)
    【解析】
    【分析】
    (1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
    ②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
    (2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
    (3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
    (1)
    证明:①∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    在△ABD与△EDC中,

    ∴△ABD≌△EDC(ASA),
    即△ABM≌△EMC;
    ②由①得△ABD≌△EDC,
    ∴AB=ED,
    ∵AB∥ED,
    ∴四边形ABDE是平行四边形;

    (2)
    成立.理由如下:
    如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
    ∵AD∥EC,ML∥DC,
    ∴四边形MDCL为平行四边形,
    ∴ML=DC=BD,
    ∵ML∥DC,
    ∴∠FML=∠MBD,
    ∵AD∥EC,
    ∴∠BMD=∠MFL,∠AMB=∠EFM,
    在△BMD和△MFL中
    ∠MBD=∠FML∠BMD=∠MFLBD=ML,
    ∴△BMD≌△MFL(AAS),
    ∴BM=MF ,
    ∵AB∥ME,
    ∴∠ABM=∠EMF,
    在△ABM和△EMF中,

    ∴△ABM≌△EMF(ASA),
    ∴AB=EM,
    ∵AB∥EM,
    ∴四边形ABME是平行四边形;

    (3)
    解:过点D作DG∥BN交AC于点G,

    ∵M为AD的中点,DG∥MN,
    ∴MN=DG,
    ∵D为BC的中点,
    ∴DG=BN,
    ∴MN=BN,
    ∴,
    由(2)知四边形ABME为平行四边形,
    ∴BM=AE,
    ∴.
    【点睛】
    本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.

    相关试卷

    冀教版八年级下册第二十二章 四边形综合与测试练习题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试练习题,共32页。

    初中冀教版第二十二章 四边形综合与测试达标测试:

    这是一份初中冀教版第二十二章 四边形综合与测试达标测试,共24页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试同步测试题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试同步测试题,共24页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map