初中冀教版第二十二章 四边形综合与测试精练
展开八年级数学下册第二十二章四边形定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )
A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)
2、下列说法不正确的是( )
A.矩形的对角线相等
B.直角三角形斜边上的中线等于斜边的一半
C.对角线互相垂直且相等的四边形是正方形
D.菱形的对角线互相垂直
3、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为( )
A.2 B.3 C.4 D.5
4、平面上六个点A,B,C,D,E,F,构成如图所示的图形,则∠A+∠B+∠C+∠D+∠E+∠F度数是( )
A.135度 B.180度 C.200度 D.360度
5、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是( )
A.长度为的线段 B.边长为2的等边三角形
C.斜边为2的直角三角形 D.面积为4的菱形
6、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是( )
A.6 B.12 C.24 D.48
7、如图,为了测量一块不规则绿地B,C两点间的距离,可以在绿地的一侧选定一点A,然后测量出AB,AC的中点D,E,如果测量出D,E两点间的距离是8m,那么绿地B,C两点间的距离是( )
A.4m B.8m C.16m D.20m
8、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
A. B. C. D.
9、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是( )
A.测量对角线是否互相平分 B.测量一组对角是否都为直角
C.测量对角线长是否相等 D.测量3个角是否为直角
10、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
B.满足的三个数,,是勾股数
C.对角线相等的四边形各边中点连线所得四边形是矩形
D.五边形的内角和为
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知矩形ABCD中,AD=3,AB=5,E是边DC上一点,将ADE绕点A顺时针旋转得到,使得点D的对应点落在AE上,如果的延长线恰好经过点B,那么DE的长度等于_____.
2、一个多边形的每个内角都等于120°,则这个多边形的边数是______.
3、在四边形ABCD中,AD∥BC,BC⊥CD,BC=10cm,M是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为_____时,以A、M、E、F为顶点的四边形是平行四边形.
4、如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.
5、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形
2、背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.
(1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;
知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.
(2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.
(3)如图4,在中,,,,点P为的费马点,连接、、,求的值.
(4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.
3、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.
(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);
(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.
4、如图,已知平行四边形ABCD.
(1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,证明四边形BEDF为平行四边形.
5、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.
(1)求证:四边形ABCD是矩形;
(2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.
-参考答案-
一、单选题
1、B
【解析】
【分析】
分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标
【详解】
如图,分别过点和点作轴于点,作轴于点,
∴,
∵四边形为菱形,
∴点为的中点,
∴点为的中点,
∴,,
∵,
∴;
由题意知菱形绕点逆时针旋转度数为:,
∴菱形绕点逆时针旋转周,
∴点绕点逆时针旋转周,
∵,
∴旋转60秒时点的坐标为.
故选B
【点睛】
根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.
2、C
【解析】
【分析】
利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.
【详解】
解;矩形的对角线相等,故选项A不符合题意;
直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;
对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;
菱形的对角线互相垂直,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.
3、A
【解析】
【分析】
由正方形1性质和勾股定理得,再由,得,则,即可解决问题.
【详解】
解:设大正方形的边长为,
大正方形的面积是18,
,
,
,
,
,
小正方形的面积,
故选:A.
【点睛】
本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出.
4、D
【解析】
【分析】
根据三角形外角性质及四边形内角和求解即可.
【详解】
解:如下图所示:
根据三角形的外角性质得,∠1=∠C+∠E,∠2=∠B+∠D,
∵∠1+∠2+∠A+∠F=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°,
故选:D.
【点睛】
此题考查了三角形的外角性质,熟记三角形外角性质及四边形内角和为360°是解题的关键.
5、D
【解析】
【分析】
先计算出正方形的对角线长,即可逐项进行判定求解.
【详解】
解:A、正方形的边长为2,
对角线长为,
长度为的线段能被边长为2的正方形及其内部所覆盖,故不符合题意;
B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故符合题意,
故选:D.
【点睛】
本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.
6、C
【解析】
【分析】
利用菱形的面积公式即可求解.
【详解】
解:菱形ABCD的面积===24,
故选:C.
【点睛】
本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.
7、C
【解析】
【分析】
根据三角形中位线定理即可求出.
【详解】
解:中,、分别是、的中点,
为三角形的中位线,
,
,
故选:C.
【点睛】
本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.
8、A
【解析】
【分析】
如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
【详解】
解:如图:过C作CE⊥OA,垂足为E,
∵菱形OABC,
∴OC=OA=4
∵,
∴∠OCE=30°
∵OC=4
∴OE=2
∴CE=
∴点C的坐标为.
故选A.
【点睛】
本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
9、D
【解析】
【分析】
矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.
【详解】
解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;
B、测量一组对角是否都为直角,不能判定形状,故不符合题意;
C、测量对角线长是否相等,不能判定形状,故不符合题意;
D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;
故选:D.
【点睛】
本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.
10、D
【解析】
【分析】
正确的命题是真命题,根据定义解答.
【详解】
解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
B. 满足的三个正整数,,是勾股数,故该项不符合题意;
C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
D. 五边形的内角和为,故该项符合题意;
故选:D.
【点睛】
此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
二、填空题
1、
【解析】
【分析】
如图,连接BE、BE′,根据矩形的性质和旋转变换的性质可得:AD′=AD=3,∠AD′E=∠D=90°,利用勾股定理可得BD′=4,再运用等面积法可得:AB•AD=AE•BD′,求出AE=,再运用勾股定理即可求得答案.
【详解】
解:如图,连接BE、BE′,
∵矩形ABCD中,AD=3,AB=5,
∴∠D=90°,
由旋转知,△AD′E′≌△ADE,
∴AD′=AD=3,∠AD′E=∠D=90°,
∵D′E′的延长线恰好经过点B,
∴∠AD′B=90°,
在Rt△ABD′中,BD′===4,
∵S△ABE=AB•AD=AE•BD′,
∴AE===,
在Rt△ADE中,DE===,
故答案为:.
【点睛】
本题考查矩形的性质、旋转性质、勾股定理、三角形的面积,熟练掌握矩形性质和旋转性质,会利用等面积法求解是解答的关键.
2、6
【解析】
【分析】
先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.
【详解】
∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°-120°=60°,
∴边数n=360°÷60°=6.
故答案为:6.
【点睛】
此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
3、4s或s
【解析】
【分析】
分两种情况:①当点F在线段BM上,即0≤t<2,②当F在线段CM上,即2≤t≤5,列方程求解.
【详解】
解:①当点F在线段BM上,即0≤t<2,以A、M、E、F为顶点的四边形是平行四边形,
则有t=4﹣2t,解得t=,
②当F在线段CM上,即2≤t≤5,以A、M、E、F为顶点的四边形是平行四边形,
则有t=2t﹣4,解得t=4,
综上所述,t=4或,以A、M、E、F为顶点的四边形是平行四边形,
故答案为:4s或s.
【点睛】
此题考查了动点问题,一元一次方程与动点问题,平行四边形的定义,熟记平行四边形的定义是解题的关键.
4、28
【解析】
【分析】
由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BO⊥AC,即可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AB//CD,AB=BC,BC//AD,
∴∠MAO=∠NCO,∠BCA=∠CAD.
在△AOM和△CON中,
,
∴△AOM≌△CON(AAS),
∴AO=CO,
又∵AB=BC,
∴BO⊥AC,
∴∠BCO=90°﹣∠OBC=28°=∠DAC.
故答案为:28.
【点睛】
本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.
5、(0,-5)
【解析】
【分析】
在Rt△ODC中,利用勾股定理求出OC即可解决问题.
【详解】
解:∵A(12,13),
∴OD=12,AD=13,
∵四边形ABCD是菱形,
∴CD=AD=13,
在Rt△ODC中,,
∴C(0,-5).
故答案为:(0,-5)
【点睛】
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
三、解答题
1、证明见解析
【解析】
【分析】
平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.
【详解】
证明:∵四边形 是平行四边形
∴
∵
∴
∵
∴四边形为平行四边形
又∵
∴四边形是矩形.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.
2、 (1)150°;
(2)见详解;
(3);
(4).
【解析】
【分析】
(1)根据旋转性质得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根据△ABC为等边三角形,得出∠BAC=60°,可证△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,根据勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;
(2)将△APB逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根据∠PAP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP,根据,根据两点之间线段最短得出点C,点P,点P′,点B′四点共线时,最小=CB′,点P在CB′上即可;
(3)将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB≌△AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根据,可得点C,点P,点P′,点B′四点共线时,最小=CB′,利用30°直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB′=AB=2,根据∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;
(4)将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可证△ECE′与△BCB′均为等边三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出点C,点E,点E′,点B′四点共线时,最小=AB′,根据四边形ABCD为正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB′=即可.
(1)
解:连结PP′,
∵≌,
∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,
∵△ABC为等边三角形,
∴∠BAC=60°
∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,
∴△APP′为等边三角形,
,∴PP′=AP=3,∠AP′P=60°,
在△P′PC中,PC=5,
,
∴△PP′C是直角三角形,∠PP′C=90°,
∴∠AP′C=∠APP+∠PPC=60°+90°=150°,
∴∠APB=∠AP′C=150°,
故答案为150°;
(2)
证明:将△APB逆时针旋转60°,得到△AB′P′,连结PP′,
∵△APB≌△AB′P′,
∴AP=AP′,PB=PB′,AB=AB′,
∵∠PAP′=∠BAB′=60°,
∴△APP′和△ABB′均为等边三角形,
∴PP′=AP,
∵,
∴点C,点P,点P′,点B′四点共线时,最小=CB′,
∴点P在CB′上,
∴过的费马点.
(3)
解:将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,
∴△APB≌△AP′B′,
∴AP′=AP,AB′=AB,
∵∠PAP′=∠BAB′=60°,
∴△APP′和△ABB′均为等边三角形,
∴PP′=AP,BB′=AB,∠ABB′=60°,
∵
∴点C,点P,点P′,点B′四点共线时,最小=CB′,
∵,,,
∴AB=2AC=2,根据勾股定理BC=
∴BB′=AB=2,
∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,
∴在Rt△CBB′中,B′C=
∴最小=CB′=;
(4)
解:将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,
∴△BCE≌△CE′B′,
∴BE=B′E′,CE=CE′,CB=CB′,
∵∠ECE′=∠BCB′=60°,
∴△ECE′与△BCB′均为等边三角形,
∴EE′=EC,BB′=BC,∠B′BC=60°,
∵,
∴点C,点E,点E′,点B′四点共线时,最小=AB′,
∵四边形ABCD为正方形,
∴AB=BC=2,∠ABC=90°,
∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,
∵B′F⊥AF,
∴BF=,BF=,
∴AF=AB+BF=2+,
∴AB′=,
∴最小=AB′=.
【点睛】
本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.
3、 (1)见解析
(2)
【解析】
【分析】
(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;
(2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.
(1)
解:如图,作∠DAE的角平分线,与DC的交点即为所求.
∵AE=AD,∠EAF=∠DAF,AF=AF,
∴△AEF≌△ADF,
∴∠AEF=∠D=90°,
∴∠DAE+∠DFE=180°,
∵∠EFC+∠DFE=180°,
∴∠EFC=∠DAE,
∵在矩形ABCD中,AD∥BC,
∴∠BEA=∠DAE,
∴∠EFC=∠BEA;
(2)
解:∵四边形ABCD是矩形,
∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,
∵AE=AD=5,
∴BE===3,
∴EC=BC﹣BE=5﹣3=2,
由(1)得:△AEF≌△ADF,
∴ ,
在 中, ,
∴ ,
∴ .
【点睛】
本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.
4、 (1)见解析
(2)见解析
【解析】
【分析】
(1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;
(2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.
(1)
如图,DE、BF为所作;
(2)
证明:∵四边形ABCD为平行四边形,
∴AD=BC,AB=CD,AD∥BC,
∵CE=CD,
∴CE=AB,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵AFBC,
∴∠CBF=∠F,
∴∠ABF=∠F,
∴AB=AF,
∴CE=AF,即CB+BE=AD+DF,
∴BE=DF,
∵BEDF,
∴四边形BEDF为平行四边形.
【点睛】
本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.
5、 (1)见解析
(2)AD=2AB,理由见解析
【解析】
【分析】
(1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;
(2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.
(1)
证明:∵点M是AD边的中点,
∴AM=DM,
∵四边形ABCD是平行四边形,
∴AB=DC,AB∥CD,
在△ABM和△DCM中,
,
∴△ABM≌△DCM(SSS),
∴∠A=∠D,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠A=90°,
∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形;
(2)
解:AD与AB之间的数量关系:AD=2AB,理由如下:
∵△BCM是直角三角形,BM=CM,
∴△BCM是等腰直角三角形,
∴∠MBC=45°,
由(1)得:四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠AMB=∠MBC=45°,
∴△ABM是等腰直角三角形,
∴AB=AM,
∵点M是AD边的中点,
∴AD=2AM,
∴AD=2AB.
【点睛】
本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.
初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题,共23页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
数学第二十二章 四边形综合与测试精练: 这是一份数学第二十二章 四边形综合与测试精练,共23页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。
初中数学第二十二章 四边形综合与测试课后测评: 这是一份初中数学第二十二章 四边形综合与测试课后测评,共29页。试卷主要包含了如图,菱形的对角线等内容,欢迎下载使用。