![2022年必考点解析冀教版八年级数学下册第二十一章一次函数专项测评试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12764679/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版八年级数学下册第二十一章一次函数专项测评试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12764679/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版八年级数学下册第二十一章一次函数专项测评试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12764679/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共32页。
八年级数学下册第二十一章一次函数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于函数y=-2x+1,下列结论正确的是( )
A.图像经过点 B.y随x的增大而增大
C.图像不经过第四象限 D.图像与直线y=-2x平行
2、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )
A. B. C. D.
3、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
4、已知点,都在直线上,则与的大小关系为( )
A. B. C. D.无法比较
5、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
x
…
﹣2
﹣1
0
1
2
…
y1
…
1
2
3
4
5
…
x
…
﹣2
﹣1
0
1
2
…
y2
…
5
2
﹣1
﹣4
﹣7
…
则关于x的不等式kx+b>mx+n的解集是( )
A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
6、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,或.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
7、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )
A. B.
C. D.
8、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).
A.快艇的速度比可疑船只的速度快0.3海里/分
B.5分钟时快艇和可疑船只的距离为3.5海里
C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶
D.当快艇出发分钟后追上可疑船只,此时离海岸海里
9、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
10、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )
A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)
C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.
2、已知直线y=kx+b(k≠0)的图像与直线y=-2x平行,且经过点(2,3),则该直线的函数表达式为______________________.
3、直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为_____.
4、如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.
5、如图,在平面直角坐标系中,点A,A1,A2,…在x轴上,分别以OA,AA1,A1A2,…为边在第一象限作等边△OAP,等边△AA1P1,等边△A1A2P2,…,且A点坐标为(2,0),直线y=kx+(k>0)经过点P,P1,P2,…,则点P2022的纵坐标为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:
(1)求蜡烛在燃烧过程中高度与时间之间的函数表达式
(2)经过多少小时蜡烛燃烧完毕?
2、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为 ;
(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.
3、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.
(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;
(2)试比较哪家公司更优惠?说明理由.
4、已知一次函数y=kx﹣4,当x=3时,y=﹣1,求它的解析式以及该直线与坐标轴的交点坐标.
5、甲、乙两车从M地出发,沿同一路线驶向N地,甲车先出发匀速驶向N地,30分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了40km/h,结果两车同时到达N地,甲乙两车距N地的路程y(km)与乙车行驶时间x(h)
(1)a= ,甲的速度是 km/h.
(2)求线段AD对应的函数表达式.
(3)直接写出甲出发多长时间,甲乙两车相距10km.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据一次函数的性质对各选项进行逐一判断即可.
【详解】
解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;
B、由于k=−2<0,则y随x增大而减小,故本选项错误;
C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;
D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;
故选:D.
【点睛】
本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
2、D
【解析】
【分析】
先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.
【详解】
解: 一次函数,其中y的值随x值的增大而减小,
当时,则 解得,故A不符合题意,
当时,则 解得 故B不符合题意;
当时,则 解得 故C不符合题意;
当时,则 解得 故D符合题意;
故选D
【点睛】
本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.
3、C
【解析】
【分析】
通过一次函数中k和b的符号决定了直线经过的象限来解决问题.
【详解】
解:因为y=-x+4中,
k=-1<0,b=4>0,
∴直线y=-x+4经过第一、二、四象限,
所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.
故选:C.
【点睛】
本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.
4、A
【解析】
【分析】
根据一次函数的增减性分析,即可得到答案.
【详解】
∵直线上,y随着x的增大而减小
又∵
∴
故选:A.
【点睛】
本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.
5、D
【解析】
【分析】
根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
【详解】
解:根据表可得y1=kx+b中y随x的增大而增大;
y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
则当x>﹣1时,kx+b>mx+n.
故选:D.
【点睛】
本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
6、B
【解析】
【分析】
当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.
【详解】
∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,
∴①正确;
∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,
∴乙车比甲车晚出发1小时,却早到1小时;
∴②正确;
设,
∴300=5m,
解得m=60,
∴;
设,
∴
解得,
∴;
∴
解得t=2.5,
∴2.5-1=1.5,
∴乙车出发后1.5小时追上甲车;
∴③错误;
当乙未出发时,,
解得t=;
当乙出发,且在甲后面时,,
解得t=;
当乙出发,且在甲前面时,,
解得t=;
当乙到大目的地,甲自己行走时,,
解得t=;
∴④错误;
故选B.
【点睛】
本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.
7、C
【解析】
【分析】
由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
【详解】
解:令直线中,得到,故,
令直线中,得到,故,
由勾股定理可知:,
∵,且,
∴,,
过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:
∵为等边三角形,
∴,
∴,
∴,
∴,
∴,
同理,∵为等边三角形,
∴,,
∴,
∴,
∴,
设直线CD的解析式为:y=kx+b,代入和,
得到:,解得,
∴CD的解析式为:,
与直线联立方程组,
解得,故E点坐标为,
故选:C.
【点睛】
本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
8、C
【解析】
【分析】
根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.
【详解】
解:快艇的速度为,可疑船只的速度为(海里/分),
∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;
5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;
由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;
设快艇出发t分钟后追上可疑船只,,解得t=,
这时离海岸海里,故D选项不符合题意;
故选:C.
【点睛】
此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.
9、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
10、B
【解析】
【分析】
根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.
【详解】
解:根据题意得,菜园三边长度的和为24m,
即,
所以,
由y>0得,,
解得,
当时,即,
解得,
∴,
故选:B.
【点睛】
题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.
二、填空题
1、自变量
【解析】
略
2、
【解析】
【分析】
由两个一次函数的图象平行求解 再把(2,3)代入函数的解析式求解即可.
【详解】
解: 直线y=kx+b(k≠0)的图像与直线y=-2x平行,
把点(2,3)代入中,
解得:
所以一次函数的解析式为:
故答案为:
【点睛】
本题考查的是利用待定系数法求解二次函数的解析式,掌握“两直线平行,两个一次函数的比例系数相等,而不相等”是解本题的关键.
3、x≥1
【解析】
【分析】
将P(a,2)代入直线l1:y=x+1中求出a=1,然后再根据图像越在上方,其对应的函数值越大即可求解.
【详解】
解:将点P(a,2)坐标代入直线y=x+1,得a=1,
从图中直接看出,在P点右侧时,直线l1:y=x+1在直线l2:y=mx+n的上方,
即当x≥1时,x+1≥mx+n,
故答案为:x≥1.
【点睛】
本题考查了一元一次不等式与一次函数的关系,图像越在上方,其对应的函数值就越大.
4、或且
【解析】
【分析】
设BC与y轴交于点M,根据题意可得E点不在AD边上,即,分两种情况进行讨论:①如果,那么点E在AB边或线段BM上;②如果,那么点E在CD边或线段CM上;对两种情况的临界情况进行分析即可得出结果.
【详解】
解:如图,设BC与y轴交于点M,
,,,
∴E点不在AD边上,
;
①如果,那么点E在AB边或线段BM上,
当点E在AB边且时,
由勾股定理得,,
,
,,
当直线经过点,时,.
,
,
当点E在线段BM上时,,
,符合题意;
②如果,那么点E在CD边或线段CM上,
当点E在CD边且时,E与D重合;
当时,由勾股定理得,,
,
,此时E与C重合,
当直线经过点时,.
当点E在线段CM上时,,
且,符合题意;
综上,当时,的取值范围是或且,
故答案为:或且.
【点睛】
题目主要考查正比例函数的综合问题,包括其性质及分类讨论思想,勾股定理解三角形等,理解题意,熟练掌握运用分类思想是解题关键.
5、32023
【解析】
【分析】
先利用等边三角形的性质求得P点坐标为(,3),再求得直线的解析式为y=x+,设P1点坐标为(x,x+),利用含30度角的直角三角形的性质求得P1点的纵坐标为9=32,找出规律,即可求解.
【详解】
解:过点P作PD⊥轴于点D,
∵等边△OAP,且A点坐标为(2,0),
∴OA= OP=2,OD=DA=,∠POD=60°,
∴PD=3,
∴P点坐标为(,3),
∵直线y=kx+(k>0)经过点P,
∴3=k+,
解得:k=,
∴直线的解析式为y=x+,
过点P1作PE⊥轴于点E,
设P1点坐标为(x,x+),
∴AE=x-2,P1E=x+,
∵∠P1AE=60°,∠AP1E=30°,
∴P1E=AE,
∴x+=(x-2),
解得:x=5,
∴P1点的纵坐标为9=32,
同理,P2点的纵坐标为27=33,
,
∴点P2022的纵坐标为32023.
故答案为:32023.
【点睛】
本题是有关点的坐标的规律题,考查了待定系数法求直线的解析式,等边三角形的性质,勾股定理等,利用数形结合的思想解决问题,与含30度角的直角三角形相结合,使问题得以解决.
三、解答题
1、 (1)y=-8x+15(0≤x≤)
(2)小时
【解析】
【分析】
(1)由图象可知一次函数过(0,15),(1,7)两点,可根据待定系数法列方程,求函数关系式.
(2)将y=0的值代入,求x的解,即为蜡烛全部燃烧完所用的时间;
(1)
由图象可知过(0,15),(1,7)两点,
设一次函数表达式为y=kx+b,
∴,
解得,
∴此一次函数表达式为:y=-8x+15(0≤x≤).
(2)
令y=0
∴-8x+15=0
解得:x=,
答:经过小时蜡烛燃烧完毕.
【点睛】
本题考查了用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.
2、 (1)(,3)或(4,3)
(2)45°
(3)y=-x+
【解析】
【分析】
(1)是直角三角形,分两种情况:①,,轴,进而得出点坐标;②,,如图过点Q作,垂足为C,在中,由勾股定理知,设,在中,由勾股定理知,在中,由勾股定理知,有,求解x的值,即的长,进而得出点坐标;
(2)如图,点P翻折后落在线段AB上的点E处,由翻折性质和可得,,,,点E是AB的中点,过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H, 可证,求出EF的值,的值,有,用证明,知,,进而可求的值;
(3)如图,由旋转的性质可知,,证,可知,,过点A作AG⊥BQ于G,设,则,在中,,由勾股定理得,解得的值,进而求出点的坐标,设过点的直线解析式为,将两点坐标代入求解即可求得解析式.
(1)
解:∵是直角三角形,点,点
∴①当时,
∵轴
∴点坐标为;
②当时,,如图过点Q作,垂足为C
在中,由勾股定理知
设,在中,由勾股定理知
在中,由勾股定理知
∴
解得
∴
∴
∴点坐标为;
综上所述,点坐标为或.
(2)
解:如图,点P翻折后落在线段AB上的点E处,
则
又∵
∴
∴
∴
∴
∴点E是AB的中点
过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,
在和中
∵∠AEM=∠BEF∠EMA=∠EFBAE=BE
∴
∴
∴EF=
∵
∴
在和中
∵
∴
∴
∴
∴.
(3)
解:如图
由旋转的性质可知
∵
∴
在和中
∠P'QA=∠PAQAQ=QA∠P'AQ=∠PQA
∴
∴
∴
过点A作AG⊥BQ于G
设
∴
在中,,由勾股定理得
解得
∴
∴点的坐标分别为
设过点的直线解析式为
将两点坐标代入得
解得:
∴过点的直线解析式为.
【点睛】
本题考查了翻折的性质,三角形全等,勾股定理,一次函数等知识.解题的关键在于将知识灵活综合运用.
3、 (1)y甲=25x+2 000;y乙=35x
(2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析
【解析】
【分析】
(1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;
(2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得
(1)
解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),
依题意得y甲=25x+2 000;y乙=35x;
(2)
解:当y甲>y乙时,即25x+2 000>35x,
解得:x<200;
当y甲=y乙时,即25x+2 000=35x,
解得:x=200;
当y甲<y乙时,即25x+2 000<35x,
解得:x>200.
∴当0<x<200时,选择乙公司更优惠;
当x=200时,选择两公司费用一样多;
当x>200时,选择甲公司更优惠.
【点睛】
此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.
4、一次函数的解析式为y=x−4,与x轴交点的坐标是(4,0),与y轴的交点坐标是(0,−4).
【解析】
【分析】
把x、y的值代入y=kx−4,通过解方程求出k的值得到一次函数的解析式,根据直线与x轴相交时,函数的y值为0,与y轴相交时,函数的x值为0求出该直线与坐标轴的交点坐标.
【详解】
解:∵一次函数y=kx−4,当x=3时,y=−1,
∴−1=3k−4,解得k=1,
∴一次函数的解析式为y=x−4,
∵当y=0时,x=4,
当x=0时,y=−4,
∴该直线与x轴交点的坐标是(4,0),与y轴的交点坐标是(0,−4).
【点睛】
本题考查了待定系数法求一次函数的解析式,一次函数与坐标轴的交点.正确求出直线的解析式是解题的关键.
5、 (1)3.5小时,76;
(2)线段AD对应的函数表达式为.
(3)甲出发或或或小时,甲乙两车相距10km.
【解析】
【分析】
(1)根据乙车3小时到货站,在货站装货耗时半小时,得出小时,甲提前30分钟,可求甲车行驶的时间为:0.5+4.5=5小时,然后甲车速度=千米/时即可;
(2)利用待定系数法AD解析式为:,把AD两点坐标代入解析式得b=38380=4.5k+b解方程即可;
(3)分两种情况,甲出发,乙未出发76t=10,乙出发后,设乙车的速度为xkm/h,利用行程列方程3x+(x-40)×1=380解方程求出x=105km/h,再用待定系数法,列方程,CD段乙车速度为105-40=65km/h,求出CD的解析式为,列方程,结合甲先行30分根据有理数加法求出甲所用时间即可.
(1)
解:∵3小时到货站,在货站装货耗时半小时,
∴小时,
甲车行驶的时间为:0.5+4.5=5小时,
甲车速度=千米/时,
故答案为:3.5小时,76;
(2)
点A表示的路程为:76×0.5=38,
设AD解析式为:,把AD两点坐标代入解析式得:
b=38380=4.5k+b,
解得:b=38k=76,
线段AD对应的函数表达式为.
(3)
甲出发乙未出发,
∴76t=10,
∴t=,
乙出发后;
设乙车的速度为vkm/h,
3v+(v-40)×1=380
解得v=105km/h,
∴点B(3,315)
设OB解析式为y=αx,代入坐标得:,
∴OB解析式为
∴,
化简为:或,
解得或,
∵CD段乙车速度为105-40=65km/h,
设CD的解析式为代入点D坐标得,
,
解得:,
∴CD的解析式为,
∴,
解得:,
∵甲提前出发30分钟,
,,,
甲出发或或或小时,甲乙两车相距10km.
【点睛】
本题考查待定系数法求一次函数解析式,利用函数图像获取信息,绝对值方程,一元一次方程,二元一次方程组解法,分类讨论思想的应用使问题完整解决是解题关键.
相关试卷
这是一份冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题,共31页。试卷主要包含了,两地相距80km,甲,点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题,共28页。试卷主要包含了,两地相距80km,甲,如图所示,直线分别与轴等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时作业,共22页。试卷主要包含了若直线y=kx+b经过一,若一次函数等内容,欢迎下载使用。