![2022年冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12764684/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12764684/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12764684/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共31页。试卷主要包含了已知等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、当时,直线与直线的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )
A.B.
C. D.
3、若点,都在一次函数的图象上,则与的大小关系是( )
A. B. C. D.
4、已知、两点,在轴上存在点使得的值最小,则点的坐标为( )
A. B. C. D.
5、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )
A.甲队的挖掘速度大于乙队的挖掘速度
B.开挖2h时,甲、乙两队所挖的河渠的长度相差8m
C.乙队在的时段,与之间的关系式为
D.开挖4h时,甲、乙两队所挖的河渠的长度相等
6、如图,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,则下列说法正确的个数是( )
①对于函数y=ax+b来说,y随x的增大而减小;②函数y=ax+d不经过第一象限;③方程ax+b=cx+d的解是x=4;④ d-b=4(a-c).
A.1 B.2 C.3 D.4
7、已知点,都在直线上,则与的大小关系为( )
A. B. C. D.无法比较
8、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )
A. B. C. D.
9、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )
A. B. C. D.
10、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1,y2的大小关系是( )
A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一次函数 y=2x+3 的图象经过第____________象限,y随x的增大而______ ,与y轴交点坐标为_________.
2、将直线沿轴向上平移2个单位长度后的直线所对应的函数表达式是__________.
3、已知点A(-2,a),B(3,b)在直线y=2x+3上,则a___b.(填“>”“<”或“=”号)
4、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .
5、如图,直线y=kx+b交坐标轴于A,B两点,则关于x的不等式kx+b<0的解集是_____.
三、解答题(5小题,每小题10分,共计50分)
1、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).
(1)求证:点(﹣2,﹣3)在直线l2上;
(2)当m=2时,请判断直线l1与l2是否相交?
2、已知A,B两地相距的路程为12km,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OCD和线段EF,分别表示甲、乙两人与A地的路程y甲、y乙与他们所行时间x(h)之间的函数关系,且OC与EF相交于点P.
(1)求y乙与x的函数关系式以及两人相遇地点P与A地的路程;
(2)求线段OC对应的y甲与x的函数关系式;
(3)求经过多少h,甲、乙两人相距的路程为6km.
3、如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于点、,经过点的直线交轴于点.
(1)求点的坐标;
(2)动点在射线上运动,过点作轴,垂足为点,交直线于点,设点的横坐标为.线段的长为.求关于的函数解析式,并直接写出自变量的取值范围;
(3)在(2)的条件下,当点在线段上时,连接,若,在线段上取一点.连接,使,问在轴上是否存在点,使是以为直角的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
4、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:
(1)货车的速度为______km/h,轿车的速度为______km/h;
(2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;
(3)货车出发______h,与轿车相距30km.
5、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为 ;
(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
【详解】
解:一次函数中,,
∴函数图象经过一二四象限
∵在一次函数中,,
∴直线经过一二三象限
函数图象如图
∴直线与的交点在第二象限
故选:.
【点睛】
本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
2、C
【解析】
【分析】
分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
【详解】
解:当两车相遇时,所用时间为120÷(60+90)=小时,
B车到达甲地时间为120÷90=小时,
A车到达乙地时间为120÷60=2小时,
∴当0≤x≤时,y=120-60x-90x=-150x+120;
当<x≤时,y=60(x-)+90(x-)=150x-120;
当<x≤2是,y=60x;
由函数解析式的当x=时,y=150×-120=80.
故选:C
【点睛】
本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
3、A
【解析】
【分析】
根据k>0时,y随x的增大而增大,进行判断即可.
【详解】
解:∵点,都在一次函数的图象上,
∴y随x的增大而增大
故选A
【点睛】
本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记
“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.
4、B
【解析】
【分析】
解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,求出直线BC的函数解析式,令x=0时得y的值即为点P的坐标.
【详解】
解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,
设直线BC的函数解析式为y=kx+b,将、C(-1,-1)代入,得
,解得,
∴直线BC的函数解析式为y=x+,
当x=0时,得y=,
∴P(0,).
故选:B.
【点睛】
此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键.
5、D
【解析】
【分析】
根据图象依次分析判断.
【详解】
解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;
开挖2h时,乙队所挖的河渠的长度为30m,
甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,
开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;
由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;
甲队开挖4h时,所挖河渠的长度为,
乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;
故选:D.
【点睛】
此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.
6、C
【解析】
【分析】
仔细观察图象:①观察函数图象可以直接得到答案;
②观察函数图象可以直接得到答案;
③根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案;
④根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案.
【详解】
解:由图象可得,对于函数y=ax+b来说,y随x的增大而减小故①正确;
函数y=ax+d图象经过第一,三,四象限,即不经过第二象限,故②不正确,
一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,所以方程ax+b=cx+d的解是x=4;故③正确;
∵一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,
∴4a+b=4c+d
∴d-b=4(a-c),故④正确.
综上所述,正确的结论有3个.
故选:C.
【点睛】
本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.
7、A
【解析】
【分析】
根据一次函数的增减性分析,即可得到答案.
【详解】
∵直线上,y随着x的增大而减小
又∵
∴
故选:A.
【点睛】
本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.
8、C
【解析】
【分析】
求出点A、点坐标,求出长即可求出点的坐标.
【详解】
解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
即,,;
以点为圆心、长为半径画弧,与轴正半轴交于点,
故,则,
点C的坐标为;
故选:C
【点睛】
本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
9、D
【解析】
【分析】
先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.
【详解】
解: 一次函数,其中y的值随x值的增大而减小,
当时,则 解得,故A不符合题意,
当时,则 解得 故B不符合题意;
当时,则 解得 故C不符合题意;
当时,则 解得 故D符合题意;
故选D
【点睛】
本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.
10、A
【解析】
【分析】
根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.
【详解】
解:∵一次函数y=3x+a的一次项系数为3>0,
∴y随x的增大而增大,
∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,
∴y1<y2,
故选:A.
【点睛】
本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键.
二、填空题
1、 一,二,三 增大 (0,3)
【解析】
略
2、
【解析】
【分析】
根据一次函数的平移规律:“上加下减常数项,左加右减自变量”,可知将函数沿着y轴向上平移2个单位长度,就是给原一次函数常数项后加2,化简后即可得到答案.
【详解】
根据一次函数的平移规律:“上加下减常数项,左加右减自变量”,可知将函数沿着y轴向上平移2个单位长度,就是给原一次函数常数项后加2,则变化后的函数解析式应变为:,化简后结果为: ,
故答案为:.
【点睛】
本题考查一次函数的图像变化与函数解析式变化之间的规律,熟练掌握并应用变化规律是解决本题的关键.
3、
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了如图,一次函数y=kx+b等内容,欢迎下载使用。
这是一份初中数学第二十一章 一次函数综合与测试同步达标检测题,共27页。试卷主要包含了点A,已知点,都在直线上,则,已知是一次函数,则m的值是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试练习题,共27页。试卷主要包含了已知正比例函数的图像经过点等内容,欢迎下载使用。