搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析冀教版八年级数学下册第二十一章一次函数专项测评练习题(含详解)

    2022年必考点解析冀教版八年级数学下册第二十一章一次函数专项测评练习题(含详解)第1页
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数专项测评练习题(含详解)第2页
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数专项测评练习题(含详解)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题,共28页。试卷主要包含了,两地相距80km,甲,如图所示,直线分别与轴等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数专项测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,一次函数y=kx+b(k>0)的图像过点,则不等式的解集是( )

    A.x>-3 B.x>-2 C.x>1 D.x>2
    2、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是(  ).

    A.-2 B.2
    C.4 D.﹣4
    3、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
    A. B. C. D.
    4、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
    A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
    5、如图,已知点是一次函数上的一个点,则下列判断正确的是( )

    A. B.y随x的增大而增大
    C.当时, D.关于x的方程的解是
    6、若点,都在一次函数的图象上,则与的大小关系是( )
    A. B. C. D.
    7、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
    A.-3 B.-1 C.2 D.4
    8、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )

    A.乙比甲提前出发1h B.甲行驶的速度为40km/h
    C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
    9、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为( )

    A. B. C. D.
    10、如图,在平面直角坐标系中,,,,点D在线段BA上,点E在线段BA的延长线上,并且满足,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为( )

    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.

    2、直线y=2x-4的图象是由直线y=2x向______平移______个单位得到.
    3、如图,在平面直角坐标系中,点在第一象限,若点A关于x轴的对称点B在直线上,则m的值为_________.

    4、甲、乙两车分别从,两地同时相向匀速行驶,当乙车到达地后,继续保持原速向远离的方向行驶,而甲车到达地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距地300千米的地(中途休息时间忽略不计).设两车行驶的时间为(小时),两车之间的距离为(千米),与之间的函数关系如图所示,则当甲车到达地时,乙车距地 __千米.

    5、有下列函数:①y=2x+1;②y=-3x+4;③ y=0.5x;④y=x-6
    (1)其中过原点的直线是________;
    (2)函数y随x的增大而增大的是_______;
    (3)函数y随x的增大而减小的________;
    (4)图象在第一、二、三象限的________ .
    三、解答题(5小题,每小题10分,共计50分)
    1、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.
    (1)求今年每套A型、B型一体机的价格各是多少万元?
    (2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?
    2、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.

    (1)分别求出这两个函数的解析式;
    (2)点在轴上,且是等腰三角形,请直接写出点的坐标.
    3、已知一次函数y1=ax+b,y2=bx+a(ab≠0,且a≠b).
    (1)若y1过点(1,2)与点(2,b﹣a﹣3)求y1的函数表达式;
    (2)y1与y2的图象交于点A(m,n),用含a,b的代数式表示n;
    (3)设y3=y1﹣y2,y4=y2﹣y1,当y3>y4时,求x的取值范围.
    4、如图,在平面直角坐标系中,直线AB为y=﹣x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).

    (1)求点B的坐标及点O到直线AB的距离;
    (2)求△ABP的面积(用含n的代数式表示);
    (3)当S△ABP=时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.
    5、已知一次函数的图象经过点和.
    (1)求此一次函数的表达式;
    (2)点是否在直线AB上,请说明理由.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    先将(-1,0)代入y=kx+b中得到k=b,则不等式化为,根据k>0解关于x的不等式即可.
    【详解】
    解:将(-1,0)代入y=kx+b中得:-k+b=0,解得:k=b,
    则不等式化为,
    ∵k>0,
    ∴(x-2)+1>0,
    解得:x>1,
    故选:C.
    【点睛】
    本题考查了一次函数与一元一次不等式的关系,根据一次函数图象上的点的坐标特征求得k与b的关系是解答的关键.
    2、B
    【解析】
    【分析】
    当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
    【详解】
    解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
    ②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
    ∵|k|越大,它的图象离y轴越近,
    ∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
    故选:B.
    【点睛】
    本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
    3、B
    【解析】
    【分析】
    根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
    【详解】
    解:∵直线y=kx+b经过一、二、四象限,
    ∴k<0,b>0,
    ∴﹣k>0,
    ∴直线y=bx﹣k过一、二、三象限,
    ∴选项B中图象符合题意.
    故选:B
    【点睛】
    本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    4、A
    【解析】
    【分析】
    先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.
    【详解】
    ∵正比例函数y=3x中,k=3>0,
    ∴y随x的增大而增大,
    ∵x1>x2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
    5、D
    【解析】
    【分析】
    根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
    【详解】
    A.该一次函数经过一、二、四象限
    , y随x的增大而减小,
    故A,B不正确;
    C. 如图,设一次函数与轴交于点

    则当时,,故C不正确
    D. 将点坐标代入解析式,得
    关于x的方程的解是
    故D选项正确
    故选D
    【点睛】
    本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
    6、A
    【解析】
    【分析】
    根据k>0时,y随x的增大而增大,进行判断即可.
    【详解】
    解:∵点,都在一次函数的图象上,
    ∴y随x的增大而增大


    故选A
    【点睛】
    本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记
    “当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.
    7、B
    【解析】
    【分析】
    先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
    【详解】
    解:根据题意,
    ∵y1>y2,
    ∴,
    解得:,
    ∴,
    ∴;,
    ∵当x<1时,y1>y2,

    ∴,
    ∴;
    ∴k的值可以是-1;
    故选:B.
    【点睛】
    本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
    8、C
    【解析】
    【分析】
    根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
    B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
    C、乙行驶的速度为
    ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
    D、;

    ∴0.75h或1.125h时,乙比甲多行驶10km,
    ∴选项D说法正确,不符合题意.
    故选C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
    9、B
    【解析】
    【分析】
    过作轴,可证得,从而得到,,可得到再由,,即可求解.
    【详解】
    解:过作轴,则,

    对于直线,令,得到,即,,
    令,得到,即,,

    为等腰直角三角形,即,,


    在和中,


    ,,即,

    设直线的解析式为,

    b=2-5k+b=3 ,
    解得 .
    过、两点的直线对应的函数表达式是.
    故选:B
    【点睛】
    本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.
    10、A
    【解析】
    【分析】
    过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,求出直线AB、AC的解析式,设出点D、E、M的坐标,根据△DGM≌△MFE,建立方程求解即可.
    【详解】
    解:过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,
    设直线AB的解析式为,把,代入得,
    ,解得,,
    ∴AB的解析式为,
    同理可求直线AC的解析式为,
    设点D坐标为,点M坐标为,
    ∵,

    ∵,,
    ∴点E是由点D向右平移3个单位,向上平移9个单位得到的,则点E坐标为,
    ∵∠EFM=∠DGM=∠DME
    ∴∠FEM+∠FME=∠DMG+∠FME =90°,
    ∴∠FEM =∠DMG,
    ∵DM=EM,
    ∴△DGM≌△MFE,
    ∴DG=FM,GM=EF,
    根据坐标可列方程组,b-a=3a+18+1.5b-9-1.5b+9-3a-9=b-a-3,
    解得,,
    所以,点M坐标为,
    故选:A.

    【点睛】
    本题考查了求一次函数解析式和全等三角形的判定与性质,解题关键是求出直线解析式,设出点的坐标,利用全等三角形建立方程.
    二、填空题
    1、
    【解析】
    【分析】
    根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.
    【详解】
    ∵直线与相交于点
    ∴的坐标既满足,也满足
    ∴是方程组的解
    故答案为:
    【点睛】
    本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.
    2、 下 4
    【解析】

    3、2
    【解析】
    【分析】
    根据关于x轴的对称点的坐标特点可得B(3,-m),然后再把B点坐标代入y=-x+1可得m的值.
    【详解】
    解:∵点A(3,m),
    ∴点A关于x轴的对称点B(3,-m),
    ∵B在直线y=-x+1上,
    ∴-m=-3+1=-2,
    ∴m=2,
    故答案为:2.
    【点睛】
    此题主要考查了关于x轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.
    4、100
    【解析】
    【分析】
    由图象可知甲车从A地到地用了4小时,从地到地用小时,乙从地到地用了12小时,进而求得甲车的速度,A、两地的距离,乙车的速度,然后根据甲车到达地的时间求解乙车距A地的距离即可.
    【详解】
    解:由图象可知,甲车从A地到地用了4小时,从地到地用小时,乙从地到地用了12小时
    ∴甲车的速度是(千米时)
    ∴、两地之间的距离是千米
    ∴乙车的速度是(千米时)
    ∵甲车到达地时,用时4小时
    ∴此时乙车距A地(千米)
    故答案为:100.
    【点睛】
    本题以行程问题为背景的函数图象的应用.解题的关键是根据函数图象理解题意,求得两车的速度.
    5、 ③ ①③④ ② ①
    【解析】

    三、解答题
    1、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元
    (2)1800万
    【解析】
    【分析】
    (1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;
    (2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.
    (1)
    设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,
    由题意得:,
    解得:
    答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;
    (2)
    设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,
    由题意可得:1.8(1100-m)≥1.2(1+25%)m,
    解得:m≤600,
    设明年需投入W万元,
    W=1.2×(1+25%)m+1.8(1100-m)
    =-0.3m+1980,
    ∵-0.3<0,
    ∴W随m的增大而减小,
    ∵m≤600,
    ∴当m=600时,W有最小值-0.3×600+1980=1800,
    故该市明年至少需投入1800万元才能完成采购计划.
    【点睛】
    本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.
    2、 (1)正比例函数的解析式为:,一次函数的解析式为:
    (2)或或或
    【解析】
    【分析】
    (1)把点代入可得,再由,可得点 ,即可求解;
    (2)分三种情况:当OP=OA=5时,当AP=OA时,当AP=OP时,即可求解.
    (1)
    解:∵一次函数的图象与轴交于点,与正比例函数的图象相交于点,
    ∴,解得:
    ∴正比例函数的解析式为:,
    ∵,
    ∴ ,
    ∵,
    ∴ ,
    ∴点 ,
    把点, 代入,得:
    b=-53k2+b=4 ,解得: ,
    ∴一次函数的解析式为:;
    (2)
    解:当OP=OA=5时,点的坐标为或;
    当AP=OA时,过点A作 轴于点C,

    ∴OC=PC=3,
    ∴OP=6,
    ∴点;
    当AP=OP时,过点P作PD⊥OA于点D,过点D作 轴于点E,

    ∴点D为AO的中点,即 ,
    ∵点,
    ∴点 ,
    ∴ ,
    设点 ,则 ,
    ∴ ,
    ∵ ,
    ∴ ,
    即 ,
    解得: 或 (舍去)
    ∴点 ,
    综上所述,点P的坐标为或或或.
    【点睛】
    本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.
    3、 (1)y1=﹣x+3
    (2)n=a+b
    (3)当a>b时,x>1;当a<b时,x<1
    【解析】
    【分析】
    (1)把(1,2)、(2,b-a-3)分别代入y1=ax+b得到a、b的方程组,然后解方程组得到y1的函数表达式;
    (2)把A(m,n)分别代入y1=ax+b和y2=bx+a中得到am+b=nbm+a=n,先利用加减消元法求出m,然后得到n与a、b的关系式;
    (3)先用a、b表示y3和y4,利用y3>y4得到(a-b)x+b-a>(b-a)x+a-b,然后解不等式即可.
    (1)
    解:把(1,2)、(2,b﹣a﹣3)分别代入y1=ax+b得

    解得,
    ∴y1的函数表达式为y1=﹣x+3;
    (2)
    解:∵y1与y2的图象交于点A(m,n),
    ∴am+b=nbm+a=n,
    ∴m=1,n=a+b;
    (3)
    解:y3=y1﹣y2=ax+b﹣(bx+a)=(a﹣b)x+b﹣a,
    y4=y2﹣y1=bx+a﹣(ax+b)=(b﹣a)x+a﹣b,
    ∵y3>y4,
    ∴(a﹣b)x+b﹣a>(b﹣a)x+a﹣b,
    整理得(a﹣b)x>a﹣b,
    当a>b时,x>1;
    当a<b时,x<1.
    【点睛】
    本题考查了待定系数法求一次函数解析式:设一次函数解析式为y=kx+b(k≠0),再把两组对应量代入,然后解关于k,b的二元一次方程组.从而得到一次函数解析式.也考查了一次函数的性质.
    4、 (1)B(4,0),
    (2)
    (3)(5,7)或(8,3)或(,)
    【解析】
    【分析】
    (1)求出直线AB的解析式,可求点B坐标,由面积法可求解;
    (2)求出点D坐标,由三角形的面积公式可求解;
    (3)先计算当S△ABP=时,P的坐标,以PB为边在第一象限作等腰直角三角形BPC,分三种情况讨论:分别以三个顶点为直角顶点画三角形,根据图形可得C的坐标.
    (1)
    解:∵直线AB为y=x+b交y轴于点A(0,3),
    ∴b=3,AO=3,
    ∴直线AB解析式为:y=x+3,
    令y=0,则0=x+3,x=4,
    ∴B(4,0),
    ∴OB=4,
    ∴AB==5,
    ∴S△AOB=×OA×OB=×AB×点O到直线AB的距离,
    ∴点O到直线AB的距离==;
    (2)
    ∵点D在直线AB上,
    ∴当x=1时,y=,即点D(1,),
    ∴PD=n-,
    ∵OB=4,
    ∴S△ABP==;
    (3)
    当S△ABP=时,,解得n=4,
    ∴点P(1,4),
    ∵E(1,0),
    ∴PE=4,BE=3,
    第1种情况,如图,当∠CPB=90°,BP=PC时,过点C作CN⊥直线x=1于点N.

    ∵∠CPB=90°,
    ∴∠CPN+∠BPE=90°,又∠CPN+∠PCN=90°,
    ∴∠BPE=∠PCN,
    又∵∠CNP=∠PEB=90°,BP=PC,
    ∴△CNP≌△PEB(AAS),
    ∴PN=EB=3,PE=CN=4,
    ∴NE=NP+PE=3+4=7,
    ∴C(5,7);
    第2种情况,如图,当∠PBC=90°,BP=BC时,过点C作CF⊥x轴于点F.

    同理可证:△CBF≌△BPE(AAS),
    ∴CF=BE=3,BF=PE=4,
    ∴OF=OB+BF=4+4=8,
    ∴C(8,3);
    第3种情况,如图3,当∠PCB=90°,CP=CB时,
    过点C作CH⊥BE,垂足为H,过点P作PG⊥CH,垂足为G,

    同理可证:△PCG≌△CBH(AAS),
    ∴CG=BH,PG=CH,
    ∵PE=4,BE=3,设CG=BH=x,PG=CH=y,
    则PE=GH=x+y=4,BE=PG-BH=y-x=3,
    解得:x=,y=,
    ∴C(,),
    ∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(5,7)或(3,8)或(,).
    【点睛】
    本题是一次函数综合题,考查了待定系数法,三角形面积公式,全等三角形的判定和性质,利用分类讨论思想解决问题是解题的关键.
    5、 (1)一次函数的表达式为;
    (2)点在直线AB上,见解析
    【解析】
    【分析】
    (1)把(-1,-1)、(1,3)分别代入y=kx+b得到关于k、b的方程组,然后解方程求出k与b的值,从而得到一次函数解析式;
    (2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.
    (1)
    解:将和代入,
    得,
    解得,,
    ∴一次函数的表达式为
    (2)
    解:点C在直线AB上,
    理由:当时,,
    ∴点在直线AB上.
    【点睛】
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共30页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共27页。试卷主要包含了已知点等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试测试题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试测试题,共29页。试卷主要包含了下列不能表示是的函数的是,一次函数y=mx﹣n等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map