初中冀教版第二十一章 一次函数综合与测试达标测试
展开
这是一份初中冀教版第二十一章 一次函数综合与测试达标测试,共25页。试卷主要包含了点A,直线不经过点,如图,已知点K为直线l等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列函数中,属于正比例函数的是( )A. B. C. D.2、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).x(千米)0100150300450500y(升)1087410 A.正比例函数关系 B.一次函数关系C.二次函数关系 D.反比例函数关系3、已知点,都在直线上,则、大小关系是( )A. B. C. D.不能计较4、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-5、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )A. B. C. D.不能确定6、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )A.-3 B.-1 C.2 D.47、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )A. B. C. D.8、直线不经过点( )A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)9、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=410、当时,直线与直线的交点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点是直线上一点,则m=______.2、已知点A(-2,a),B(3,b)在直线y=2x+3上,则a___b.(填“>”“<”或“=”号)3、观察图象可以发现:①直线y=x,y=3x向右逐渐______,即y的值随x的增大而增大;②直线y=-x,y=-4x向右逐渐______,即y的值随x的增大而减小. 4、如图,正比例函数 y=kx(k≠0)的图像经过点 A(2,4),AB⊥x 轴于点 B,将△ABO 绕点 A逆时针旋转 90°得到△ADC,则直线 AC 的函数表达式为_____.5、如图,在平面直角坐标系中,点在第一象限,若点A关于x轴的对称点B在直线上,则m的值为_________.三、解答题(5小题,每小题10分,共计50分)1、已知y与x﹣2成正比例,且当x=1时,y=﹣2(1)求变量y与x的函数关系式;(2)请在给出的平面直角坐标系中画出此函数的图象;(3)已知点A在函数y=ax+b的图象上,请直接写出关于x的不等式ax+b>2x﹣4的解集 .2、如图,在△ABC中,∠ACB=90°,AC=BC,BC与y轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),求点D的坐标.3、如图,在平面直角坐标系中,直线与直线相交于点.(1)求m,b的值;(2)求的面积;(3)点P是x轴上的一点,过P作垂于x轴的直线与的交点分别为C,D,若P点的横坐标为n,当时直接写出n的取值范围.4、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.(1)分别求出这两个函数的解析式;(2)点在轴上,且是等腰三角形,请直接写出点的坐标.5、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划? -参考答案-一、单选题1、D【解析】【分析】根据正比例函数的定义逐个判断即可.【详解】解:A.是二次函数,不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.是反比例函数,不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D.【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b(k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.2、B【解析】【分析】根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可【详解】根据表格数据,描点、连线画出函数的图象如图:故y与x的函数关系是一次函数.故选B.【点睛】本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.3、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线,k=-2<0,∴y随着x的增大而减小,∵点,都在直线上,-4<2,∴,故选:C.【点睛】此题考查了一次函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟记性质是解题的关键.4、C【解析】略5、C【解析】【分析】利用一次函数的增减性性质判定即可.【详解】∵直线y=-2x+3的k=-2<0,∴y随x的增大而减小,∵-2<3,∴,故选C.【点睛】本题考查了一次函数的增减性,熟练掌握性质是解题的关键.6、B【解析】【分析】先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.【详解】解:根据题意,∵y1>y2,∴,解得:,∴,∴;,∵当x<1时,y1>y2,∴∴,∴;∴k的值可以是-1;故选:B.【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.7、D【解析】【分析】先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.【详解】解: 一次函数,其中y的值随x值的增大而减小, 当时,则 解得,故A不符合题意,当时,则 解得 故B不符合题意;当时,则 解得 故C不符合题意;当时,则 解得 故D符合题意;故选D【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.8、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A、当时,,即经过点,此项不符题意;B、当时,,即不经过点,此项符合题意;C、当时,,即经过点,此项不符题意;D、当时,,即经过点,此项不符题意;故选:B.【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.9、C【解析】【分析】点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.【详解】解: 点K为直线l:y=2x+4上一点,设 将点K向下平移2个单位,再向左平移a个单位至点K1, 将点K1向上平移b个单位,向右平1个单位至点K2, 点K2也恰好落在直线l上, 整理得: 故选C【点睛】本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.10、B【解析】【分析】根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.【详解】解:一次函数中,,∴函数图象经过一二四象限∵在一次函数中,,∴直线经过一二三象限函数图象如图∴直线与的交点在第二象限故选:.【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.二、填空题1、10【解析】【分析】把点代入解析式,即可求解.【详解】解:∵点是直线上一点,∴ .故答案为:10【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.2、<【解析】【分析】根据一次函数的解析式可得到函数的增减性,则可比较a、b的大小.【详解】解:∵在y=2x+3中,k=2>0,∴y随x的增大而增大,∵点A(−2,a),B(3,b)在直线y=2x+3上,且−2<3,∴a<b,故答案为:<.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.3、 上升 下降【解析】略4、y=-0.5x+5【解析】【分析】直接把点A(2,4)代入正比例函数y=kx,求出k的值即可;由A(2,4),AB⊥x轴于点B,可得出OB,AB的长,再由△ABO绕点A逆时针旋转90°得到△ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可.【详解】解:∵正比例函数y=kx(k≠0)经过点A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4,∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)设直线AC的解析式为y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式为:y=-0.5x+5【点睛】本题考查的是一次函数图象上点的坐标特点及图形旋转的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5、2【解析】【分析】根据关于x轴的对称点的坐标特点可得B(3,-m),然后再把B点坐标代入y=-x+1可得m的值.【详解】解:∵点A(3,m),∴点A关于x轴的对称点B(3,-m),∵B在直线y=-x+1上,∴-m=-3+1=-2,∴m=2,故答案为:2.【点睛】此题主要考查了关于x轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.三、解答题1、 (1)y=2x﹣4(2)见解析(3)x<3【解析】【分析】(1)设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),求出k=2即可;(2)列表描点连线即可;(3)先确定A点的坐标是(3,2),把A点的横坐标代入y=2x﹣4求出函数值=2,即点A也在函数y=2x﹣4的图象上,点A是函数y=ax+b和函数y=2x﹣4的交点,然后利用图像法求不等式的解集即可.(1)解:∵y与x﹣2成正比例,∴设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),解得:k=2,即y=k(x﹣2)=2(x﹣2)=2x﹣4,所以变量y与x的函数关系式是y=2x﹣4;(2)列表x02y-40描点(0,-4),(2,0),连线得y=2x﹣4的图象;(3)从图象可知:A点的坐标是(3,2),把A点的横坐标x=3代入y=2x﹣4时,y=2,即点A也在函数y=2x﹣4的图象上,即点A是函数y=ax+b和函数y=2x﹣4的交点,∴关于x的不等式ax+b>2x﹣4反应在函数图像函数y=ax+b在函数y=2x﹣4图像上方,交点A的左侧,所以关于x的不等式ax+b>2x﹣4的解集是x<3,故答案为:x<3.【点睛】本题考查待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集,掌握待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集是解题关键.2、(0,)【解析】【分析】过A和B分别作AF⊥x轴于F,BE⊥x轴于E,可证得△AFC≌△CEB,从而得到FC=BE,AF=CE,再由点C的坐标为(-2,0),点A的坐标为(-6,3),可得OC=2,AF=CE=3,OF=6,从而得到B点的坐标是(1,4),再求出直线BC的解析式,即可求解.【详解】解:过A和B分别作AF⊥x轴于F,BE⊥x轴于E,∵∠ACB=90°,∴∠ACF+∠BCE=90°,∵AF⊥x轴,BE⊥x轴,∴ ,∴∠ACF+∠CAF=90°,∴∠CAF=∠BCE,在△AFC和△CEB中, ,∴△AFC≌△CEB(AAS),∴FC=BE,AF=CE, ∵点C的坐标为(-2,0),点A的坐标为(-6,3),∴OC=2,AF=CE=3,OF=6,∴CF=OF-OC=4,OE=CE-OC=2-1=1,∴BE=4,∴则B点的坐标是(1,4),设直线BC的解析式为:y=kx+b, ,解得: ,∴直线BC的解析式为:y=x+ ,令 ,则 ,∴ D(0,).【点睛】本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC≌△CEB是解题的关键.3、 (1)m=2,b=3(2)12(3)或【解析】【分析】(1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.(2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;(3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.(1)解:∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),将点B(2,4)代入直线得:,解得b=3;(2)将y=0代入,得:x=-6,∴A(-6,0),∴OA=6,∴△AOB的面积==12;(3)令x=n,则,,当C、D在点B左侧时,则,解得:;当C、D在点B右侧时,则,解得:;综上:n的取值范围为或.【点睛】本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.4、 (1)正比例函数的解析式为:,一次函数的解析式为:(2)或或或【解析】【分析】(1)把点代入可得,再由,可得点 ,即可求解;(2)分三种情况:当OP=OA=5时,当AP=OA时,当AP=OP时,即可求解.(1)解:∵一次函数的图象与轴交于点,与正比例函数的图象相交于点,∴,解得: ∴正比例函数的解析式为:,∵,∴ ,∵,∴ ,∴点 ,把点, 代入,得: ,解得: ,∴一次函数的解析式为:;(2)解:当OP=OA=5时,点的坐标为或;当AP=OA时,过点A作 轴于点C,∴OC=PC=3,∴OP=6,∴点;当AP=OP时,过点P作PD⊥OA于点D,过点D作 轴于点E,∴点D为AO的中点,即 ,∵点,∴点 ,∴ ,设点 ,则 ,∴ ,∵ ,∴ ,即 ,解得: 或 (舍去)∴点 ,综上所述,点P的坐标为或或或.【点睛】本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.5、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元(2)1800万【解析】【分析】(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意得:,解得:答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意可得:1.8(1100-m)≥1.2(1+25%)m,解得:m≤600, 设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100-m)=-0.3m+1980, ∵-0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值-0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.
相关试卷
这是一份2020-2021学年第二十一章 一次函数综合与测试随堂练习题,共27页。试卷主要包含了已知是一次函数,则m的值是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共26页。试卷主要包含了一次函数的大致图象是,点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后测评,共28页。试卷主要包含了点A,已知正比例函数的图像经过点,如图所示,直线分别与轴等内容,欢迎下载使用。