开学活动
搜索
    上传资料 赚现金

    2022年最新冀教版八年级数学下册第二十一章一次函数专项测试试卷(含答案详解)

    2022年最新冀教版八年级数学下册第二十一章一次函数专项测试试卷(含答案详解)第1页
    2022年最新冀教版八年级数学下册第二十一章一次函数专项测试试卷(含答案详解)第2页
    2022年最新冀教版八年级数学下册第二十一章一次函数专项测试试卷(含答案详解)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共30页。试卷主要包含了,两地相距80km,甲等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数专项测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为(   )

    A. B. C. D.
    2、当时,直线与直线的交点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3、下列语句是真命题的是( ).A.内错角相等
    B.若,则
    C.直角三角形中,两锐角和的函数关系是一次函数
    D.在中,,那么为直角三角形
    4、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )

    A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
    C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
    5、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )
    A. B. C. D.
    6、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )

    A.乙比甲提前出发1h B.甲行驶的速度为40km/h
    C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
    7、如图,直线与x轴交于点B,与y轴交于点C,点,D为线段的中点,P为y轴上的一个动点,连接、,当的周长最小时,点P的坐标为( )

    A. B. C. D.
    8、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离(单位:)和两车行驶时间(单位:)之间的关系如图所示.下列说法错误的是( ).

    A.两车出发时相遇 B.甲、乙两地之间的距离是
    C.货车的速度是 D.时,两车之间的距离是
    9、下列各点在函数y=﹣3x+2图象上的是(  )
    A.(0,﹣2) B.(1,﹣1) C.(﹣1,﹣1) D.(﹣,1)
    10、下列函数中,y是x的一次函数的是(  )
    A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一次函数 y=2x+3 的图象经过第____________象限,y随x的增大而______ ,与y轴交点坐标为_________.
    2、将一次函数向上平移5个单位长度后得到直线AB,则平移后直线AB对应的函数表达式为______.
    3、像h=0.5n,T=-2t,l=2πr这些函数解析式都是______与______的积的形式.一般地,形如y=kx(k是常数,k≠0)的函数,叫做______函数,其中k叫做______.
    4、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.
    5、观察图象可知:
    当k>0时,直线y=kx+b从左向右______;
    当k<0时,直线y=kx+b从左向右______.
    由此可知,一次函数y=kx+b(k,b是常数,k≠0) 具有如下性质:
    当k>0时,y随x的增大而______;当k<0时,y随x的增大而______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面直角坐标系中,三个顶点的坐标分别为,,,将进行平移,使点移动到点,得到△,其中点、、分别为点、、的对应点

    (1)请在所给坐标系中画出△,并直接写出点的坐标;
    (2)求的面积;
    (3)直线过点且平行于轴,在直线上求一点使与的面积相等,请写出点的坐标.
    2、如图,在△ABC中,∠ACB=90°,AC=BC,BC与y轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),求点D的坐标.

    3、【数学阅读】
    如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
    小明的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
    【推广延伸】
    如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.
    【解决问题】
    如图4,在平面直角坐标系中,点C在x轴正半轴上,点B在y轴正半轴上,且AB=AC.点B到x轴的距离为3.

    (1)点B的坐标为_____________;
    (2)点P为射线CB上一点,过点P作PE⊥AC于E,点P到AB的距离为d,直接写出PE与d的数量关系_______________________________;
    (3)在(2)的条件下,当d=1,A为(-4,0)时,求点P的坐标.
    4、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.

    (1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
    (2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
    (3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
    5、甲、乙两人相约周末登山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

    (1)______米;
    (2)求出甲距地面的高度与登山时间的关系式,并指出一次项系数的实际意义;
    (3)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则在整个爬山过程中,登山多长时间时,甲乙两人距离地面的高度差为70米?

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A

    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    2、B
    【解析】
    【分析】
    根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
    【详解】
    解:一次函数中,,
    ∴函数图象经过一二四象限
    ∵在一次函数中,,
    ∴直线经过一二三象限
    函数图象如图

    ∴直线与的交点在第二象限
    故选:.
    【点睛】
    本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
    3、C
    【解析】
    【分析】
    根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.
    【详解】
    解:A、两直线平行,内错角相等,故原命题是假命题,不符合题意;
    B、若,则,故原命题是假命题,不符合题意;
    C、直角三角形中,两锐角和的函数关系是一次函数,故原命题是真命题,符合题意;
    D、在中,,那么最大角∠C=,故△ABC为锐三角形,故原命题是假命题,不符合题意;
    故选:C.
    【点睛】
    本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.
    4、B
    【解析】
    【分析】
    根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
    【详解】
    解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
    (5x+5×x)÷5=x(m/min),
    ∵公司位于家正西方500米,
    ∴(−10−2)×x=500+(5+2.5)x,
    解得x=200,
    ∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
    爸爸到达公司时,丁丁距离商店路程为:
    3500-(−12)×(300+200)=m.
    综上,正确的选项为B.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
    5、D
    【解析】
    【分析】
    先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.
    【详解】
    解: 一次函数,其中y的值随x值的增大而减小,

    当时,则 解得,故A不符合题意,
    当时,则 解得 故B不符合题意;
    当时,则 解得 故C不符合题意;
    当时,则 解得 故D符合题意;
    故选D
    【点睛】
    本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.
    6、C
    【解析】
    【分析】
    根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
    B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
    C、乙行驶的速度为
    ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
    D、;

    ∴0.75h或1.125h时,乙比甲多行驶10km,
    ∴选项D说法正确,不符合题意.
    故选C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
    7、A
    【解析】
    【分析】
    作点关于轴的对称点,连接,交轴于点,则,进而根据对称性求得当点P与重合时,的周长最小,通过求直线的解析式,即可求得点的坐标
    【详解】
    解:如图,作点关于轴的对称点,连接,交轴于点,则,连接,

    的周长,点是定点,则的长不变,
    当重合时,的周长最小,
    由,令,令,则

    是的中点

    ,点是关于轴对称的点

    设直线的解析式为:,将,代入,

    解得
    直线的解析式为:
    令,则

    故选A
    【点睛】
    本题考查了轴对称的性质求最值,求一次函数解析式,求直线与坐标轴的交点,求线段中点坐标,掌握根据轴对称的性质求线段和的最值是解题的关键.
    8、D
    【解析】
    【分析】
    根据函数图象分析,当时,函数图象有交点,即可判断A选项;根据最大距离为360即可判断B选项,根据A选项可得两车的速度进而判断C,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D选项.
    【详解】
    解:根据函数图象可知,当时,,总路程为360km,
    所以,轿车的速度为,货车的速度为:
    故A,B,C正确
    时,轿车的路程为,货车的路程为,
    则两车的距离为
    故D选项不正确
    故选D
    【点睛】
    本题考查了一次函数的应用,从图象上获取信息是解题的关键.
    9、B
    【解析】
    【分析】
    根据一次函数图象上点的坐标满足函数解析式,逐一判断,即可得到答案.
    【详解】
    ∵,
    ∴A不符合题意,
    ∵,
    ∴B符合题意,
    ∵,
    ∴C不符合题意,
    ∵,
    ∴D不符合题意,
    故选B.
    【点睛】
    本题主要考查一次函数图象上点的坐标,掌握一次函数图象上点的坐标满足函数解析式,是解题的关键.
    10、B
    【解析】
    【分析】
    利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
    【详解】
    解:∵y=不符合一次函数的形式,故不是一次函数,
    ∴选项A不符合题意;
    ∵形如y=kx+b(k,b为常数).
    ∴y=﹣3x+1中,y是x的一次函数.
    故选项B符合题意;
    ∵y=2是常数函数,
    ∴选项C不符合题意;
    ∵y=x2+1不符合一次函数的形式,故不是一次函数,
    ∴选项D不符合题意;
    综上,y是x的一次函数的是选项B.
    故选:B.
    【点睛】
    本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
    二、填空题
    1、 一,二,三 增大 (0,3)
    【解析】

    2、y=x+7
    【解析】
    【分析】
    直接根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,把直线y=x+2向上平移5个单位长度后所得直线的解析式为:y=x+2+5,即y=x+7.
    ∴直线AB对应的函数表达式为y=x+7.
    故答案为:y=x+7.
    【点睛】
    本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
    3、 常数 自变量 正比例 比例系数
    【解析】

    4、k<1
    【解析】
    【分析】
    利用一次函数图象与系数的关系列出关于m的不等式k-1<0,然后解不等式即可.
    【详解】
    解:∵一次函数y=(k-1)x+3中,y随x的增大而减小,
    ∴k-1<0,
    解得k<1;
    故答案为:k<1.
    【点睛】
    本题主要考查一次函数图象与系数的关系.解答本题注意理解:k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
    5、 上升 下降 增大 减小
    【解析】

    三、解答题
    1、 (1)见解析,
    (2)7
    (3),
    【解析】
    【分析】
    (1)根据将进行平移,使点移动到A,得出平移方式为向右移动5个单位向上移动1个单位,据此平移得到,顺次连接,则△即为所求;
    (2)根据网格的特点用长方形减去三个三角形的面积即可;
    (3)根据题意可知点在过点且平行于的直线上,先求得直线解析式为,根据平行,设直线解析式为,将点代入,求得,联立与即可求得点的坐标.
    (1)
    如图所示,△即为所求,

    由图知,点的坐标为;
    故答案为:;
    (2)
    的面积为,
    故答案为:7;
    (3)
    如图,过点作的平行线,与直线的交点即为所求点,
    由、,设直线解析式为

    解得
    即直线的解析式为,
    设直线解析式为,
    将点代入,得:,
    解得,
    直线的解析式为,
    当时,,
    解得,
    点的坐标为,,
    故答案为:,.
    【点睛】
    本题考查了坐标与图形,平移作图,求一次函数解析式,一次函数的平移,两直线交点问题,掌握平移的性质是解题的关键.
    2、(0,)
    【解析】
    【分析】
    过A和B分别作AF⊥x轴于F,BE⊥x轴于E,可证得△AFC≌△CEB,从而得到FC=BE,AF=CE,再由点C的坐标为(-2,0),点A的坐标为(-6,3),可得OC=2,AF=CE=3,OF=6,从而得到B点的坐标是(1,4),再求出直线BC的解析式,即可求解.
    【详解】
    解:过A和B分别作AF⊥x轴于F,BE⊥x轴于E,

    ∵∠ACB=90°,
    ∴∠ACF+∠BCE=90°,
    ∵AF⊥x轴,BE⊥x轴,
    ∴ ,
    ∴∠ACF+∠CAF=90°,
    ∴∠CAF=∠BCE,
    在△AFC和△CEB中,

    ∴△AFC≌△CEB(AAS),
    ∴FC=BE,AF=CE,
    ∵点C的坐标为(-2,0),点A的坐标为(-6,3),
    ∴OC=2,AF=CE=3,OF=6,
    ∴CF=OF-OC=4,OE=CE-OC=2-1=1,
    ∴BE=4,
    ∴则B点的坐标是(1,4),
    设直线BC的解析式为:y=kx+b,
    k+b=4-2k+b=0 ,解得: ,
    ∴直线BC的解析式为:y=x+ ,
    令 ,则 ,
    ∴ D(0,).
    【点睛】
    本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC≌△CEB是解题的关键.
    3、推广延伸:PD=PE+CF,证明见解析;
    解决问题:(1)(0,3);(2)PE=3+d或PE=3-d;(3)或
    【解析】
    【分析】
    推广延伸:连接AP,由△ABP与△ACP面积之差等于△ABC的面积可以证得三线段间的关系;
    解决问题:
    (1)由点B到x轴的距离及点B在y轴正半轴上即可得到点B的坐标;
    (2)分两种情况:当点P在CB延长线上时,由推广延伸的结论即可得PE与d的关系;当点P在线段CB上时,由阅读材料中的结论可得PE与d的关系;
    (3)由点A的坐标及AB=AC可求得点C的坐标,从而可求得直线CB的解析式;分两种情况:点P在CB延长线上及当点P在线段CB上,由(2)中结论即可求得点P的纵坐标,从而由点P在直线CB上即可求得点P的横坐标,从而得到点P的坐标.
    【详解】
    推广延伸:猜想:PD=PE+CF
    证明如下:
    连接AP,如图3


    ∴AB=AC
    ∴PD-CF=PE
    ∴PD=PE+CF

    解决问题:
    (1)∵点B在y轴正半轴上,点B到x轴的距离为3
    ∴B(0,3)
    故答案为:(0,3)
    (2)当点P在CB延长线上时,如图

    由推广延伸的结论有:PE=OB+PF=3+d;
    当点P在线段CB上时,如图

    由阅读材料中的结论可得PE=OB-PF=3-d;
    故答案为:PE=3+d或PE=3-d
    (3)∵A(-4,0),B(0,3)
    ∴OA=4,OB=3
    由勾股定理得:
    ∴AC=AB=5
    ∴OC=AC-OA=5-4=1
    ∴C(1,0)
    设直线CB的解析式为y=kx+b(k≠0)
    把C、B的坐标分别代入得:
    解得:
    即直线CB的解析式为y=-3x+3
    由(2)的结论知:PE=3+1=4或PE=3-1=2
    ∵点P在射线CB上
    ∴点P的纵坐标为正,即点P的纵坐标为4或2
    当y=4时,-3x+3=4,解得:,即点P的坐标为;
    当y=2时,-3x+3=2,解得:,即点P的坐标为
    综上:点P的坐标为或

    【点睛】
    本题是材料阅读题,考查了等腰三角形的性质及一次函数的图象与性质,读懂材料的内容并能灵活运用于新的情境中是本题的关键.
    4、 (1)见解析
    (2)
    (3)6
    【解析】
    【分析】
    (1)作出过点E的l的垂线即可解决;
    (2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;
    (3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.
    (1)
    所作出点E的对应点E′如下图所示:

    (2)
    设直线l交x轴于点D
    在y=2x-2中,令y=0,得x=1;令x=0,得y=-2
    则点D、点G的坐标分别为(1,0)、(0,-2)
    ∴OD=1,OG=2
    由对称性的性质得:,
    ∵GE∥x轴




    设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)
    ∴EG=a


    在Rt△中,由勾股定理得:
    解得:
    当时,
    所以点P的坐标为

    (3)
    分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
    ∵A,B两点的坐标分别为(-2,-6),(4,6)
    ∴CM=4-(-2)=6
    则点运动路径的长为6
    故答案为:6

    【点睛】
    本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
    5、 (1)30;
    (2)y=10x+100;一次项的系数是表示甲登山的速度;
    (3)3或10或13分钟
    【解析】
    【分析】
    (1)根据图象直接得到答案;
    (2)利用待定系数法解答;
    (3)求出甲登山速度,由此求出乙登山的函数解析式,列方程当10x+100−(30x−30)=70时,解得,当30x−30−(10x+100)=70时,当300−(10x+100)=70时,解方程即可.
    (1)
    解:由图象可得b=15÷1×2=30米,
    故答案为:30.
    (2)
    解:设甲距地面的高度与登山时间的关系式y=kx+m,
    由图象可得,过点C(0,100)、D(20,300),
    ∴,解得,
    ∴甲距地面的高度与登山时间的关系式y=10x+100;
    一次项的系数是表示甲登山的速度;
    (3)
    解:甲登山速度为(300-100)÷20=10(米/分钟),
    当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x-2)=30x-30.
    当y=30x-30=300时,x=11.
    甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0⩽x⩽20),
    当10x+100−(30x−30)=70时,解得:x=3;
    当30x−30−(10x+100)=70时,解得:x=10;
    当300−(10x+100)=70时,解得:x=13.
    ∴登山3分钟、10分钟或13分钟时,甲乙两人距离地面的高度差为70米.
    【点睛】
    此题考查了一次函数的图象,一元一次方程的应用,待定系数法求函数解析式,正确理解函数图象并应用解决问题是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共29页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。

    数学八年级下册第二十一章 一次函数综合与测试当堂检测题:

    这是一份数学八年级下册第二十一章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了如图,已知点K为直线l等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试课时作业:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试课时作业,共28页。试卷主要包含了已知P1,点A,若一次函数等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map