搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析冀教版八年级数学下册第二十一章一次函数单元测试试题(含详细解析)

    2022年最新精品解析冀教版八年级数学下册第二十一章一次函数单元测试试题(含详细解析)第1页
    2022年最新精品解析冀教版八年级数学下册第二十一章一次函数单元测试试题(含详细解析)第2页
    2022年最新精品解析冀教版八年级数学下册第二十一章一次函数单元测试试题(含详细解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试课后作业题

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试课后作业题,共26页。试卷主要包含了若一次函数,直线不经过点,已知正比例函数的图像经过点等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知直线轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为(       A. B. C. D.2、如图,一次函数ykxbk>0)的图像过点,则不等式的解集是(     A.x>-3 B.x>-2 C.x>1 D.x>23、若一次函数的图像经过第一、三、四象限,则的值可能为(       A.-2 B.-1 C.0 D.24、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有(       A.①② B.①③ C.②④ D.①②④5、若一次函数为常数,)的图象不经过第三象限,那么应满足的条件是(       A. B.C. D.6、已知一次函数yk1x+b1和一次函数y1k2x+b2的自变量x与因变量y1y2的部分对应数值如表所示,则关于xy的二元一次方程组的解为(  )x﹣2﹣1012y1﹣10123y2﹣5﹣3﹣113A. B. C. D.7、直线不经过点(  )A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)8、若点都在一次函数的图象上,则的大小关系是(       A. B. C. D.9、已知正比例函数的图像经过点(2,4)、(1,)、(1,),那么的大小关系是(        A.  B.  C.  D.无法确定10、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是(     A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到C.甲行驶小时时货车到达 D.甲行驶到地需要第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一般地,任何一个二元一次方程都可以转化为一次函数ykxbkb为常数,且k≠0)的形式,所以每个二元一次方程都对应一个_____,也对应一条直线.这条直线上每个点的坐标(xy)都是这个二元一次方程的解.由含有未知数xy的两个二元次一方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从数的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从形的角度看,解这样的方程组,相当于确定两条相应直线_____的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.2、函数的图象相交于点,则方程的解为______.3、关于正比例函数y=2x,有下列结论:①函数图象都经过点(2,1);②函数图象经过第二、第四象限;③yx的增大而增大;④不论x取何值,总有y>0,其中,错误的结论是______.4、一次函数ykxbk≠0)的图象是_______.5、已知点A(-2,a),B(3,b)在直线y=2x+3上,则a___b.(填“>”“<”或“=”号)三、解答题(5小题,每小题10分,共计50分)1、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.       (1)N95型和一次性成人口罩每箱进价分别为多少元?       (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?       (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?2、如图,在平面直角坐标系中,三个顶点的坐标分别为,将进行平移,使点移动到点,得到△,其中点分别为点的对应点(1)请在所给坐标系中画出△,并直接写出点的坐标;(2)求的面积;(3)直线过点且平行于轴,在直线上求一点使的面积相等,请写出点的坐标.3、甲、乙两人相约周末登山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)______米;(2)求出甲距地面的高度与登山时间的关系式,并指出一次项系数的实际意义;(3)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则在整个爬山过程中,登山多长时间时,甲乙两人距离地面的高度差为70米?4、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表: 普通板栗(件)精品板栗(件)总金额(元)甲购买情况23350乙购买情况41300(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?5、【数学阅读】如图1,在ABC中,AB=AC,点P为边BC上的任意一点,过点PPDABPEAC,垂足分别为DE,过点CCFAB,垂足为F,求证:PD+PE=CF小明的证明思路是:如图2,连接AP,由ABPACP面积之和等于ABC的面积可以证得:PD+PE=CF【推广延伸】如图3,当点PBC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PDPECF的数量关系,并证明.【解决问题】如图4,在平面直角坐标系中,点Cx轴正半轴上,点By轴正半轴上,且AB=AC.点Bx轴的距离为3.(1)点B的坐标为_____________;(2)点P射线CB上一点,过点PPEACE,点PAB的距离为d,直接写出PEd的数量关系_______________________________;(3)在(2)的条件下,当d=1,A为(-4,0)时,求点P的坐标. -参考答案-一、单选题1、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);以点为圆心、长为半径画弧,与轴正半轴交于点,则C的坐标为故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.2、C【解析】【分析】先将(-1,0)代入ykxb中得到k=b,则不等式化为,根据k>0解关于x的不等式即可.【详解】解:将(-1,0)代入ykxb中得:-k+b=0,解得:k=b则不等式化为k>0,∴(x-2)+1>0,解得:x>1,故选:C.【点睛】本题考查了一次函数与一元一次不等式的关系,根据一次函数图象上的点的坐标特征求得kb的关系是解答的关键.3、D【解析】【分析】利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,m-1>0,m>1,m的值可能为2.故选:D.【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0y=kx+b的图象经过一、三、四象限”是解题的关键.4、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由题意可得:甲步行的速度为(米分);由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,结论正确;∴乙步行的速度为/结论正确;乙走完全程的时间(分乙到达终点时,甲离终点距离是:(米结论错误;9分到23分钟这个时刻的函数关系式为,则把点代入得:,解得:设23分钟到30分钟这个时间的函数解析式为,把点代入得:,解得:分别代入可得:故④错误;故正确的结论有①②故选:A【点睛】本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.5、D【解析】【分析】根据一次函数图象与系数的关系解答即可.【详解】解:一次函数是常数,的图象不经过第三象限,故选:D.【点睛】本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与kb的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6、C【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),∴一次函数y1=k1xy=k2x+b的图象的交点坐标为(2,3),∴关于xy的二元一次方程组的解为故选:C.【点睛】本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1y2=k2x+b2,其图象的交点坐标(xy)中xy的值是方程组的解.7、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A、当时,,即经过点,此项不符题意;B、当时,,即不经过点,此项符合题意;C、当时,,即经过点,此项不符题意;D、当时,,即经过点,此项不符题意;故选:B.【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.8、A【解析】【分析】根据k>0时,yx的增大而增大,进行判断即可.【详解】解:∵点都在一次函数的图象上,yx的增大而增大故选A【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,yx的增大而增大;当k<0时,yx的增大而减小”.9、A【解析】【分析】先求出正比例函数解析式根据正比例函数的图象性质,当k<0时,函数随x的增大而减小,可得y1y2的大小.【详解】解:∵正比例函数的图像经过点(2,4)、代入解析式得解得∴正比例函数为<0,yx的增大而减小,由于-1<1,故y1<y2故选:A.【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数的图象,当k<0时,yx的增大而减小是解题关键.10、C【解析】【分析】根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.【详解】解:两地的距离为故A选项正确,不符合题意;故D选项正确,不符合题意;根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,即货车返回途中与甲相遇后又经过甲到故B选项正确,相遇时为第4小时,此时甲行驶了货车行驶了则货车的速度为则货车到达地所需的时间为即第小时故甲行驶小时时货车到达故C选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.二、填空题1、     一次函数     交点【解析】2、【解析】【分析】由题意知,方程的解为其交点的横坐标,进而可得结果.【详解】解:由题意知的解为两直线交点的横坐标故答案为:【点睛】本题考查了一次函数图象的交点与一次方程解的关系.解题的关键在于理解一次函数图象的交点与一次方程解的关系.3、①②④【解析】4、一条直线【解析】5、<【解析】【分析】根据一次函数的解析式可得到函数的增减性,则可比较ab的大小.【详解】解:∵在y=2x+3中,k=2>0,yx的增大而增大,∵点A(−2,a),B(3,b)在直线y=2x+3上,且−2<3,ab故答案为:<.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时,yx的增大而增大,当k<0时,yx的增大而减小.三、解答题1、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可; (2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: ,解得: 答:N95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得: 解得:a≤40.∵a取正整数,0<a≤40.a的最大值为40.答:最多可购进N95型40箱.(3)解:设购进的口罩获得最大的利润为w则依题意得:w=500a+100(80﹣a)=400a+8000,又∵0<a≤40,∴wa的增大而增大,∴当a=40时,W=400×40+8000=24000元.即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.答:最大利润为24000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.2、 (1)见解析,(2)7(3)【解析】【分析】(1)根据将进行平移,使点移动到A,得出平移方式为向右移动5个单位向上移动1个单位,据此平移得到,顺次连接,则△即为所求;2)根据网格的特点用长方形减去三个三角形的面积即可;3)根据题意可知点在过点且平行于的直线上,先求得直线解析式为,根据平行,设直线解析式为,将点代入,求得,联立即可求得点的坐标(1)如图所示,即为所求,由图知,点的坐标为故答案为:(2)的面积为故答案为:7(3)如图,过点的平行线,与直线的交点即为所求点,设直线解析式为解得即直线解析式为设直线解析式为将点代入,得:解得直线的解析式为时,解得的坐标为故答案为:【点睛】本题考查了坐标与图形,平移作图,求一次函数解析式,一次函数的平移,两直线交点问题,掌握平移的性质是解题的关键.3、 (1)30;(2)y=10x+100;一次项的系数是表示甲登山的速度;(3)3或10或13分钟【解析】【分析】(1)根据图象直接得到答案;(2)利用待定系数法解答;(3)求出甲登山速度,由此求出乙登山的函数解析式,列方程当10x+100−(30x−30)=70时,解得,当30x−30−(10x+100)=70时,当300−(10x+100)=70时,解方程即可.(1)解:由图象可得b=15÷1×2=30米,故答案为:30.(2)解:设甲距地面的高度与登山时间的关系式y=kx+m由图象可得,过点C(0,100)、D(20,300),,解得∴甲距地面的高度与登山时间的关系式y=10x+100;一次项的系数是表示甲登山的速度;(3)解:甲登山速度为(300-100)÷20=10(米/分钟),当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x-2)=30x-30.y=30x-30=300时,x=11.甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20),当10x+100−(30x−30)=70时,解得:x=3;当30x−30−(10x+100)=70时,解得:x=10;当300−(10x+100)=70时,解得:x=13.∴登山3分钟、10分钟或13分钟时,甲乙两人距离地面的高度差为70米.【点睛】此题考查了一次函数的图象,一元一次方程的应用,待定系数法求函数解析式,正确理解函数图象并应用解决问题是解题的关键.4、 (1)普通板栗的单价为55元,精品板栗的单价为80元;(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【解析】【分析】(1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;(2)加工普通板栗a件,则加工精品板栗件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.(1)解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:解得答:普通板栗的单价为55元,精品板栗的单价为80元;(2)解:加工普通板栗a件,则加工精品板栗件,由题意得:∴当时,所获总利润w最多,答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【点睛】题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.5、推广延伸:PD=PE+CF,证明见解析;解决问题:(1)(0,3);(2)PE=3+dPE=3-d;(3)【解析】【分析】推广延伸:连接AP,由△ABP与△ACP面积之差等于△ABC的面积可以证得三线段间的关系;解决问题:(1)由点Bx轴的距离及点By轴正半轴上即可得到点B的坐标;(2)分两种情况:当点PCB延长线上时,由推广延伸的结论即可得PEd的关系;当点P在线段CB上时,由阅读材料中的结论可得PEd的关系;(3)由点A的坐标及AB=AC可求得点C的坐标,从而可求得直线CB的解析式;分两种情况:点PCB延长线上及当点P在线段CB上,由(2)中结论即可求得点P的纵坐标,从而由点P在直线CB上即可求得点P的横坐标,从而得到点P的坐标.【详解】推广延伸:猜想:PD=PE+CF证明如下:连接AP,如图3AB=ACPDCF=PEPD=PE+CF解决问题:(1)∵点By轴正半轴上,点Bx轴的距离为3B(0,3)故答案为:(0,3)(2)当点PCB延长线上时,如图由推广延伸的结论有:PE=OB+PF=3+d当点P在线段CB上时,如图由阅读材料中的结论可得PE=OBPF=3-d故答案为:PE=3+dPE=3-d(3)∵A(-4,0),B(0,3)OA=4,OB=3由勾股定理得:AC=AB=5OC=ACOA=5-4=1C(1,0)设直线CB的解析式为y=kx+b(k≠0)CB的坐标分别代入得:解得:即直线CB的解析式为y=-3x+3由(2)的结论知:PE=3+1=4或PE=3-1=2∵点P在射线CB∴点P的纵坐标为正,即点P的纵坐标为4或2y=4时,-3x+3=4,解得:,即点P的坐标为y=2时,-3x+3=2,解得:,即点P的坐标为综上:点P的坐标为【点睛】本题是材料阅读题,考查了等腰三角形的性质及一次函数的图象与性质,读懂材料的内容并能灵活运用于新的情境中是本题的关键. 

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步测试题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步测试题,共27页。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共32页。试卷主要包含了一次函数的大致图象是,如图,已知点K为直线l等内容,欢迎下载使用。

    数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题:

    这是一份数学八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共31页。试卷主要包含了已知点,若一次函数,一次函数的图象不经过的象限是,,两地相距80km,甲等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map