数学八年级下册第二十一章 一次函数综合与测试当堂检测题
展开
这是一份数学八年级下册第二十一章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了如图,已知点K为直线l等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )A.且 B.且C.且 D.且2、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )A.甲队的挖掘速度大于乙队的挖掘速度B.开挖2h时,甲、乙两队所挖的河渠的长度相差8mC.乙队在的时段,与之间的关系式为D.开挖4h时,甲、乙两队所挖的河渠的长度相等3、关于一次函数 ,下列说法不正确的是( )A.图象经过点(2,0) B.图象经过第三象限 C.函数y随自变量x的增大而减小 D.当x≥2时,y≤04、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=45、在平面直角坐标系中,已知点,点,在x轴上确定点C,使得的周长最小,则点C的坐标是( )A. B. C. D.6、一次函数y=2x﹣5的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地C.甲行驶小时时货车到达地 D.甲行驶到地需要8、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )A.小于0 B.等于0 C.大于0 D.非负数9、已知点,在一次函数的图像上,则m与n的大小关系是( )A. B. C. D.无法确定10、若一次函数的图像经过第一、三、四象限,则的值可能为( )A.-2 B.-1 C.0 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、像y=x+1,s=-3t+1这些函数解析式都是常数k与自变量的______与常数b的______的形式.一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做______函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.2、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.3、函数和的图象相交于点,则方程的解为______.4、如图,直线y=-x+2与y=kx+b(k≠0且k,b为常数)的交点坐标为(3,-1),则关于x的不等式kx+b≥-x+2的解集为 ___.5、如图,一次函数与的图象相交于点,则方程组的解是________.三、解答题(5小题,每小题10分,共计50分)1、A、B两地相距20千米,甲、乙两人某日中午12点同时从A地出发匀速前往B地,甲的速度是每小时4千米,如图,线段OM反映了乙所行的路程s与所用时间t之间的函数关系,根据提供的信息回答下列问题:(1)乙由A地前往B地所行的路程s与所用时间t之间的函数解析式是 ,定义域是 ;(2)在图中画出反映甲所行驶的路程s与所用时间t之间的函数图象;(3)下午3点时,甲乙两人相距 千米.2、如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三顶点坐标:A1 ,B1 ,C1 ;(2)计算△ABC的面积;(3)若点P为x轴上一点,当PA+PB最小时,写出此时P点坐标 .3、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.(1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.(2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;(3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.4、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:(1)货车的速度为______km/h,轿车的速度为______km/h;(2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;(3)货车出发______h,与轿车相距30km.5、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).(1)求这个一次函数的解析式;(2)若这个一次函数的图象与x轴的交点为C,求△BOC的面积. -参考答案-一、单选题1、D【解析】【分析】根据一次函数图象与系数的关系解答即可.【详解】解:一次函数、是常数,的图象不经过第三象限,且,故选:D.【点睛】本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2、D【解析】【分析】根据图象依次分析判断.【详解】解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;开挖2h时,乙队所挖的河渠的长度为30m,甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;甲队开挖4h时,所挖河渠的长度为,乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;故选:D.【点睛】此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.3、B【解析】【分析】当 时, ,可得图象经过点(2,0);再由 ,可得图象经过第一、二、四象限;函数y随自变量x的增大而减小;然后根据 时, ,可得当x≥2时,y≤0,即可求解.【详解】解:当 时, ,∴图象经过点(2,0),故A正确,不符合题意;∵ ,∴图象经过第一、二、四象限,故B错误,符合题意;∴函数y随自变量x的增大而减小,故C正确,不符合题意;当 时, ,∴当x≥2时,y≤0,故D正确,不符合题意;故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.4、C【解析】【分析】点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.【详解】解: 点K为直线l:y=2x+4上一点,设 将点K向下平移2个单位,再向左平移a个单位至点K1, 将点K1向上平移b个单位,向右平1个单位至点K2, 点K2也恰好落在直线l上, 整理得: 故选C【点睛】本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.5、C【解析】【分析】因为AB的长度是确定的,故△CAB的周长最小就是CA+CB的值最小,作点A关于x轴的对称点A′,连接A′B交x轴于点C,求出C点坐标即可.【详解】解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点C,此时,AC+BC=A′C+BC=AC,长度最小,∵A(-1,2),∴A′(-1,﹣2),设直线A′B的解析式为y=kx+b(k≠0),把A′(-1,﹣2),代入得,∴,解得,∴直线A′B的解析式为y=-2x﹣4,当y=0时,x=-2,∴C(-2,0).故选:C【点睛】本题考查了轴对称-最短路径问题,一次函数与坐标轴交点问题,解题关键是确定点C的位置,利用一次函数解析式求坐标.6、B【解析】【分析】由直线的解析式得到k>0,b<0,利用一次函数的性质即可确定直线经过的象限.【详解】解:∵y=2x-5,∴k>0,b<0,故直线经过第一、三、四象限.不经过第二象限.故选:B.【点睛】此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.7、C【解析】【分析】根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.【详解】解:两地的距离为,故A选项正确,不符合题意;故D选项正确,不符合题意;根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,则即货车返回途中与甲相遇后又经过甲到地故B选项正确,相遇时为第4小时,此时甲行驶了,货车行驶了则货车的速度为则货车到达地所需的时间为即第小时故甲行驶小时时货车到达地故C选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.8、C【解析】【分析】一次函数过第一、二、三象限,则,根据图象结合性质可得答案.【详解】解:如图,函数的图象经过第一、二、三象限,则函数的图象与轴交于正半轴, 故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.9、A【解析】【分析】根据一次函数的性质,y随x增大而减小判断即可.【详解】解:知点,在一次函数的图像上,∵-2<0,∴y随x增大而减小,∵,∴,故选:A.【点睛】本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.10、D【解析】【分析】利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,∴m-1>0,∴m>1,∴m的值可能为2.故选:D.【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0⇔y=kx+b的图象经过一、三、四象限”是解题的关键.二、填空题1、 积 和 一次【解析】略2、一次函数【解析】略3、【解析】【分析】由题意知,方程的解为其交点的横坐标,进而可得结果.【详解】解:由题意知的解为两直线交点的横坐标故答案为:.【点睛】本题考查了一次函数图象的交点与一次方程解的关系.解题的关键在于理解一次函数图象的交点与一次方程解的关系.4、【解析】【分析】根据题意结合函数图象,可得当时,的图象对应的点在函数(且k,b为常数)的图象下面,据此即可得出不等式的解集.【详解】解:从图象得到,当时,的图象对应的点在函数(且k,b为常数)的图象下面,∴不等式的解集为,故答案为:.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,解决此类问题的关键是仔细观察图形,注意几个关键点,做到数形结合.5、##【解析】【分析】先利用y=x+3确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求得结论.【详解】解:把P(m,5)代入y=x+3得m+3=5,解得m=2,所以P点坐标为(2,5),所以方程组的解是,故答案为:.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题1、 (1)s=t;0≤t≤6(2)见解析(3)2【解析】【分析】(1)设直线的解析式为,将代入即可求出,由图象可直接得出的范围;(2)根据甲的速度,可得出行驶时间,得到终点时点的坐标,作出直线即可;(3)用甲行驶的路程减去乙行驶的路程即可.(1)解:设直线的解析式为,且,,解得;;由图象可知,;故答案为:;;(2)解:甲的速度是每小时4千米,甲所用的时间(小时),,图象如下图所示:(3)解:下午3点时,甲、乙两人之间的距离为:.故答案为:2.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2、 (1)(2)3.5(3)【解析】【分析】(1)依据轴对称的性质进行作图,即可得到△A1B1C1,进而得出△A1B1C1三顶点坐标;(2)依据割补法进行计算,即可得到△ABC的面积;(3)作点A关于x轴的对称点,连接B,交x轴于点P,依据一次函数的图象可得点P的坐标.(1)如图,△A1B1C1即为所求;其中A1,B1,C1的坐标分别为:故答案为:(2)△ABC的面积为:3×3-×3×1-×1×2-×2×3=3.5.(3)如图,作点A关于x轴的对称点,连接B,则B与x轴的交点即是点P的位置.设B的解析式为y=kx+b(k≠0),把和B(4,2)代入可得:,解得,∴y=x-2,令y=0,则x=2,∴P点坐标为,故答案为:.【点睛】本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.3、 (1)P(0,1);△POC的面积与△AOB的面积的比值为;(2)y=﹣2x+2;(3)线段PC所在直线的解析式为:y=4x﹣4或y=x+【解析】【分析】(1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;(2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;(3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.(1)解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,2),∴OA=OB=2,∴∠OAB=∠OBA=45°,∴.当线段PC与线段AB平行时,可画出图形,设PC所在直线的解析式为y=﹣x+m,∵C(1,0),∴﹣1+m=0,解得,m=1,∴PC所在直线的解析式为:y=﹣x+1,∴P(0,1);此时,,∴.即P(0,1);△POC的面积与△AOB的面积的比值为;(2)解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B重合,此时P(0,2),设PC所在直线的解析式为:y=kx+b,∴,解得,,∴线段PC所在直线的解析式为:y=﹣2x+2.(3)解:根据题意,需要分类讨论:①当点P在线段AB上时,如图所示,此时,过点P作PD⊥x轴于点D,∴,解得:,∴AD=PD=,∴OD=OA﹣AD=2﹣=,∴P(,),设线段PC所在直线的解析式:y=k1x+b1,∴,解得,,∴线段PC所在直线的解析式:y=4x﹣4;②当点P在线段OB上时,如图所示,此时,∴,解得,,∴P(0,),设线段PC所在直线的解析式:y=k2x+b2,∴,解得,,∴线段PC所在直线的解析式:y=x+;综上可知,线段PC所在直线的解析式为:y=4x﹣4或y=x+.【点睛】本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键.4、 (1)80,100(2)当时,;当时,;当时,;当时,,图见解析(3)或【解析】【分析】(1)结合图象可得经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,根据题意列出方程求解即可得;(2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;(3)将代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.(1)解:由图象可得:经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,∴,解得:,,∴货车的速度为,则轿车的速度为,故答案为:80;100;(2)当时,图象经过,点,设直线解析式为:,代入得:,解得:,∴当时,;分钟小时,∵两车相遇后休息了24分钟,∴当时,;当时,轿车距离甲地的路程为:,货车距离乙地的路程为:,轿车到达甲地还需要:,货车到达乙地还需要:,∴当时,;当时,;当时,;当时,;当时,;∴函数图象分别经过点,,,作图如下:(3)①当时,令可得:,解得:;②当时,令可得:,解得:;③当时,令可得:;解得::,不符合题意,舍去;综上可得:货车出发或,与轿车相距30km,故答案为:或.【点睛】题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.5、 (1)y=2x+3(2)S△BOC=【解析】【分析】(1)根据点A、B的坐标利用待定系数法即可求出一次函数的解析式;(2)利用直线解析式求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.(1)解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).∴,解得:,∴这个一次函数的解析式为:y=2x+3.(2)解:令y=0,则2x+3=0,解得x=﹣,∴C(﹣,0),∵B(0,3).∴S△BOC==.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共29页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试习题,共30页。试卷主要包含了一次函数y=mx﹣n等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共32页。试卷主要包含了一次函数的大致图象是,如图,已知点K为直线l等内容,欢迎下载使用。