![2022年最新强化训练冀教版八年级数学下册第二十一章一次函数重点解析试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12764849/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第二十一章一次函数重点解析试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12764849/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第二十一章一次函数重点解析试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12764849/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第二十一章 一次函数综合与测试课时训练
展开
这是一份2021学年第二十一章 一次函数综合与测试课时训练,共24页。试卷主要包含了巴中某快递公司每天上午7,下列不能表示是的函数的是等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列函数中,属于正比例函数的是( )A. B. C. D.2、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )A.①② B.①③ C.②④ D.①②④3、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是( )A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣14、巴中某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为( )①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为8件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个 B.2个 C.3个 D.4个5、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )A. B. C. D.6、已知点,在一次函数y=-2x-b的图像上,则m与n的大小关系是( )A.m>n B.m=n C.m<n D.无法确定7、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )A. B.C. D.8、下列不能表示是的函数的是( )A.05101533.544.5B.C.D.9、一次函数,,且随的增大而减小,则其图象可能是( )A. B.C. D.10、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )A.第一象限 B.第二象限C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于正比例函数y=2x,有下列结论:①函数图象都经过点(2,1);②函数图象经过第二、第四象限;③y随x的增大而增大;④不论x取何值,总有y>0,其中,错误的结论是______.2、直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为_____.3、如图,直线y=kx+b交坐标轴于A,B两点,则关于x的不等式kx+b<0的解集是_____.4、甲、乙两车分别从,两地同时相向匀速行驶,当乙车到达地后,继续保持原速向远离的方向行驶,而甲车到达地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距地300千米的地(中途休息时间忽略不计).设两车行驶的时间为(小时),两车之间的距离为(千米),与之间的函数关系如图所示,则当甲车到达地时,乙车距地 __千米.5、如图,直线y=-x+2与y=kx+b(k≠0且k,b为常数)的交点坐标为(3,-1),则关于x的不等式kx+b≥-x+2的解集为 ___.三、解答题(5小题,每小题10分,共计50分)1、已知y与成正比例,且当时,;(1)求出y与x之间的函数关系式;(2)当时,求y的值;(3)当时,求x的取值范围.2、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.(1)求k的值;(2)求四边形OCNB的面积;(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.3、已知点,和直线,则点到直线的距离可用公式计算,例如:求点到直线的距离.解:因为直线,其中,.所以点到直线的距离:.根据以上材料,解答下列问题:(1)求点到直线的距离.(2)已知的圆心的坐标为,半径为,判断与直线的位置关系并说明理由.(3)已知互相平行的直线与之间的距离是,试求的值.4、已知一次函数 y=-x+2.(1)求这个函数的图像与两条坐标轴的交点坐标;(2)在平面直角坐标系中画出这个函数的图像;(3)结合函数图像回答问题:①当 x>0 时,y 的取值范围是 ;②当 y<0 时,x 的取值范围是 .5、如图,在△ABC中,∠ACB=90°,AC=BC,BC与y轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),求点D的坐标. -参考答案-一、单选题1、D【解析】【分析】根据正比例函数的定义逐个判断即可.【详解】解:A.是二次函数,不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.是反比例函数,不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D.【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b(k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.2、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由题意可得:甲步行的速度为(米分);由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,故①结论正确;∴乙步行的速度为米/分,故②结论正确;乙走完全程的时间(分),乙到达终点时,甲离终点距离是:(米),故③结论错误;设9分到23分钟这个时刻的函数关系式为,则把点代入得:,解得:,∴,设23分钟到30分钟这个时间的函数解析式为,把点代入得:,解得:,∴,把分别代入可得:或,故④错误;故正确的结论有①②.故选:A.【点睛】本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.3、D【解析】【分析】根据题意和一次函数的性质,可以解答本题.【详解】解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,∴b=-1,k>0,故选:D.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.4、B【解析】【分析】根据图象可知15分钟后,甲仓库内快件数量为130件,据此可得甲仓库揽收快件的速度,进而得出时,甲仓库内快件数;由图象可知45分钟,乙仓库派送快件数量为180件,可得乙仓库每分钟派送快件的数量,进而得出乙仓库快件的总数量,然后根据题意列方程即可求出两仓库快递件数相同是时间.【详解】解:由题意结合图象可知:15分钟后,甲仓库内快件数量为130件,故①说法错误;甲仓库揽收快件的速度为:(件分),所以时,甲仓库内快件数为:(件,故③说法正确;(分,即45分钟乙仓库派送快件数量为180件,所以乙仓库每分钟派送快件的数量为:(件,故②说法错误;所以乙仓库快件的总数量为:(件,设分钟后,两仓库快递件数相同,根据题意得:,解得,即时,两仓库快递件数相同,故④说法正确.所以说法正确的有③④共2个.故选:B.【点睛】本题考查了一次函数的应用,解题的关键是结合图象,理解图象中点的坐标代表的意义.5、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);即,,;以点为圆心、长为半径画弧,与轴正半轴交于点,故,则,点C的坐标为;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.6、A【解析】【分析】由k=−2<0,利用一次函数的性质可得出y随x的增大而减小,结合<可得出m>n.【详解】解:∵k=−2<0,∴y随x的增大而减小,又∵点A(,m),B(,n)在一次函数y=−2x+1的图象上,且<,∴m>n.故选:A.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.7、B【解析】【分析】利用一次函数的性质逐项进行判断即可解答.【详解】解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;故选B.【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.8、B【解析】【分析】根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.【详解】解:A、根据图表进行分析为一次函数,设函数解析式为:,将,,,分别代入解析式为:,解得:,,所以函数解析式为:,∴y是x的函数;B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;C、D选项从图象及解析式看可得y是x的函数.故选:B.【点睛】题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.9、B【解析】【分析】根据一次函数的图象是随的增大而减小,可得,再由,可得,即可求解.【详解】解:一次函数的图象是随的增大而减小,∴ ,;又,,一次函数的图象经过第二、三、四象限.故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.10、C【解析】【分析】通过一次函数中k和b的符号决定了直线经过的象限来解决问题.【详解】解:因为y=-x+4中,k=-1<0,b=4>0,∴直线y=-x+4经过第一、二、四象限,所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.故选:C.【点睛】本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.二、填空题1、①②④【解析】略2、x≥1【解析】【分析】将P(a,2)代入直线l1:y=x+1中求出a=1,然后再根据图像越在上方,其对应的函数值越大即可求解.【详解】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,在P点右侧时,直线l1:y=x+1在直线l2:y=mx+n的上方,即当x≥1时,x+1≥mx+n,故答案为:x≥1.【点睛】本题考查了一元一次不等式与一次函数的关系,图像越在上方,其对应的函数值就越大.3、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.4、100【解析】【分析】由图象可知甲车从A地到地用了4小时,从地到地用小时,乙从地到地用了12小时,进而求得甲车的速度,A、两地的距离,乙车的速度,然后根据甲车到达地的时间求解乙车距A地的距离即可.【详解】解:由图象可知,甲车从A地到地用了4小时,从地到地用小时,乙从地到地用了12小时∴甲车的速度是(千米时)∴、两地之间的距离是千米∴乙车的速度是(千米时)∵甲车到达地时,用时4小时∴此时乙车距A地(千米)故答案为:100.【点睛】本题以行程问题为背景的函数图象的应用.解题的关键是根据函数图象理解题意,求得两车的速度.5、【解析】【分析】根据题意结合函数图象,可得当时,的图象对应的点在函数(且k,b为常数)的图象下面,据此即可得出不等式的解集.【详解】解:从图象得到,当时,的图象对应的点在函数(且k,b为常数)的图象下面,∴不等式的解集为,故答案为:.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,解决此类问题的关键是仔细观察图形,注意几个关键点,做到数形结合.三、解答题1、 (1)(2)(3)【解析】【分析】(1)根据正比例的定义,设y=k(x+2),然后把已知一组对应值代入求出k即可;(2)利用(1)中的函数关系式求自变量为−3对应的函数值即可;(3)通过解不等式2x+4<−2即可.(1)解:设y=k(x+2)(k≠0),当x=1,y=6得k(1+2)=6,解得k=2,所以y与x之间的函数关系式为y=2x+4;(2)x=−3 时,y=2×(−3)+4=−2;(3)y<−2 时,2x+4<−2,解得.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.2、 (1)k=2;(2)7;(3)≤m≤3【解析】【分析】(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;(2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;(3)先求得点P的纵坐标,根据题意列不等式组求解即可.(1)解:令x=0,则y=2;∴B (0,2),∴OB=2,∵AB=;∴OA=1,∴A (-1,0),把B (-1,0)代入y=kx+2得:0=-k+2,∴k=2;(2)解:∵直线l2平行于直线y=−2x.∴设直线l2的解析式为y=−2x+b.把(2,2)代入得2=−22+b,解得:b=6,∴直线l2的解析式为.令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),由(1)得直线l1的解析式为.解方程组得:,∴N (1,4),四边形OCNB的面积=S△ODC- S△NBD==7;(3)解:∵点P的横坐标为m,∴点P的纵坐标为,∴PM=,∵PM≤3,且点P在线段CD上,∴≤3,且m≤3.解得:≤m≤3.【点睛】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.3、 (1)(2)相切,理由见解析(3)或【解析】【分析】(1)将点直接代入距离公式计算.(2)计算圆心到直线的距离,将距离与半径比较,判断圆与直线之间的关系,(3)在直线上任取一点,计算该点到的距离,可求得.(1)因为直线,其中,,所以点到直线的距离:,(2)因为直线,其中,,所以圆心到直线的距离::,圆心到直线的距离,与直线相切.(3)在直线上取一点,根据题意得,点到直线的距离是,因为直线,其中,,所以点到直线的距离:,即:,解得:或.【点睛】本题属于一次函数的综合题,主要考查了点到直线的距离公式应用,解题关键是能够理解题目中距离的计算公式,并能结合圆、另一条直线进行计算.根据各数量之间的关系,正确列出一元一次不等式.4、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)见解析(3)①y<2;②x>2【解析】【分析】(1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;(2)两点法画出函数图象;(3)通过观察函数图象求解即可.(1)解:令x=0,则y=2, 令y=0,则x=2,∴这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)解:这个函数的图像如图所示:,(3)解:①观察图像可知:当x>0时,y<2,故答案为:y<2;②观察图像可知:当y<0时,x>2,故答案为:x>2.【点睛】本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.5、(0,)【解析】【分析】过A和B分别作AF⊥x轴于F,BE⊥x轴于E,可证得△AFC≌△CEB,从而得到FC=BE,AF=CE,再由点C的坐标为(-2,0),点A的坐标为(-6,3),可得OC=2,AF=CE=3,OF=6,从而得到B点的坐标是(1,4),再求出直线BC的解析式,即可求解.【详解】解:过A和B分别作AF⊥x轴于F,BE⊥x轴于E,∵∠ACB=90°,∴∠ACF+∠BCE=90°,∵AF⊥x轴,BE⊥x轴,∴ ,∴∠ACF+∠CAF=90°,∴∠CAF=∠BCE,在△AFC和△CEB中, ,∴△AFC≌△CEB(AAS),∴FC=BE,AF=CE, ∵点C的坐标为(-2,0),点A的坐标为(-6,3),∴OC=2,AF=CE=3,OF=6,∴CF=OF-OC=4,OE=CE-OC=2-1=1,∴BE=4,∴则B点的坐标是(1,4),设直线BC的解析式为:y=kx+b, ,解得: ,∴直线BC的解析式为:y=x+ ,令 ,则 ,∴ D(0,).【点睛】本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC≌△CEB是解题的关键.
相关试卷
这是一份数学八年级下册第二十一章 一次函数综合与测试综合训练题,共28页。试卷主要包含了若点,巴中某快递公司每天上午7等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共26页。试卷主要包含了如图所示,直线分别与轴,若一次函数,一次函数的图象一定经过等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试一课一练,共29页。试卷主要包含了已知正比例函数的图像经过点,下列函数中,属于正比例函数的是,若直线y=kx+b经过一等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)