初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共26页。试卷主要包含了当时,直线与直线的交点在,一次函数y=mx﹣n,已知点,都在直线上,则等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点和点在一次函数的图象上,且,下列四个选项中k的值可能是( )A.-3 B.-1 C.1 D.32、如图,一次函数y=kx+b(k>0)的图像过点,则不等式的解集是( )A.x>-3 B.x>-2 C.x>1 D.x>23、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( ) A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/minC.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m4、当时,直线与直线的交点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )A.x≥2 B.x≤2 C.x≥3 D.x≤36、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )A. B.C. D.7、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )A.第一象限 B.第二象限C.第三象限 D.第四象限8、已知点,都在直线上,则、大小关系是( )A. B. C. D.不能计较9、下列各点中,不在一次函数的图象上的是( )A. B.C. D.10、一次函数的大致图象是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、正比例函数图像经过点(1,-1),那么k=__________.2、一次函数y=kx+b(k≠0)的图象是_______.3、如图,一次函数和的图象交于点,则不等式的解集是______.4、如图,直线的解析式为,直线的解析式为,为上的一点,且点的坐标为,作直线轴,交直线于点,再作于点,交直线于点,作轴,交直线于点,再作,交直线于点,作轴,交直线于点按此作法继续作下去,则的坐标为________,的坐标为________.5、将一次函数的图像向上平移5个单位后,所得图像的函数表达式为______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知直线y=﹣x+3与x轴、y轴分别相交于点A、B,将△AOB沿直线CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度,并求出此时直线BC的表达式;(3)过点B作直线BP与x轴交于点P,且使OP=OA,求△ABP的面积.2、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止,甲、乙两车之间的距离(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车行驶的速度是 千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)直接写出两车相距85千米时x的值.3、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.(1)若,请写出与的函数关系式.(2)若,请写出与的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?4、已知一次函数的图象经过点和.(1)求此一次函数的表达式;(2)点是否在直线AB上,请说明理由.5、已知一次函数图象与直线平行且过点.(1)求一次函数解析式;(2)若(1)中一次函数图象,分别与、轴交于、两点,求、两点坐标;(3)若点在轴上,且,求点坐标. -参考答案-一、单选题1、A【解析】【分析】由m-1<m+1时,y1>y2,可知y随x增大而减小,则比例系数k+2<0,从而求出k的取值范围.【详解】解:当m-1<m+1时,y1>y2,y随x的增大而减小,∴k+2<0,得k<﹣2.故选:A.【点睛】本题考查一次函数的图象性质:当k<0,y随x增大而减小,难度不大.2、C【解析】【分析】先将(-1,0)代入y=kx+b中得到k=b,则不等式化为,根据k>0解关于x的不等式即可.【详解】解:将(-1,0)代入y=kx+b中得:-k+b=0,解得:k=b,则不等式化为,∵k>0,∴(x-2)+1>0,解得:x>1,故选:C.【点睛】本题考查了一次函数与一元一次不等式的关系,根据一次函数图象上的点的坐标特征求得k与b的关系是解答的关键.3、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×x)÷5=x(m/min),∵公司位于家正西方500米,∴(−10−2)×x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(−12)×(300+200)=m.综上,正确的选项为B.故选:B.【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.4、B【解析】【分析】根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.【详解】解:一次函数中,,∴函数图象经过一二四象限∵在一次函数中,,∴直线经过一二三象限函数图象如图∴直线与的交点在第二象限故选:.【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.5、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.6、A【解析】【分析】分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.【详解】解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,点P沿D→C移动,的面积不变,点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,故选:A.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.7、C【解析】【分析】通过一次函数中k和b的符号决定了直线经过的象限来解决问题.【详解】解:因为y=-x+4中,k=-1<0,b=4>0,∴直线y=-x+4经过第一、二、四象限,所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.故选:C.【点睛】本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.8、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线,k=-2<0,∴y随着x的增大而减小,∵点,都在直线上,-4<2,∴,故选:C.【点睛】此题考查了一次函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟记性质是解题的关键.9、B【解析】【分析】根据一次函数解析变形可得,进而判断即可.【详解】解:∵∴A. ,,则在一次函数的图象上 ,不符合题意;B. ,,则不在一次函数的图象上,符合题意;C. ,,则在一次函数的图象上 ,不符合题意; D. ,,,则在一次函数的图象上 ,不符合题意;故选B【点睛】本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.10、A【解析】【分析】由知直线必过,据此求解可得.【详解】解:,当时,,则直线必过,如图满足条件的大致图象是:故选:A.【点睛】本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当,时,图象过一、二、三象限;②当,时,图象过一、三、四象限;③当,时,图象过一、二、四象限;④当,时,图象过二、三、四象限.二、填空题1、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k+1,即可得出k值.【详解】解:∵正比例函数的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.2、一条直线【解析】略3、x≥1【解析】【分析】结合图象,写出直线y=mx+n在直线y=kx+b下方所对应的自变量的范围即可.【详解】解:∵函数y=mx+n的图象与y=kx+b的图象交于点P(1,2),∴当x≥1时,kx+b≥mx+n,∴不等式的解集为x≥1.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.4、 【解析】【分析】过点 作 轴于点D,点 作 轴于点E,可先求出点 的坐标为 ,从而得到,进而得到 ,得到 ,同理 ,可得到, ,再由轴,可得到 ,再根据等腰三角形的性质可得 ,进而求出 ,同理得到点 ,由此发现规律,即可求解.【详解】解:如图,过点 作 轴于点D,点 作 轴于点E,∵点的坐标为,轴,∴点 的纵坐标为 ,∴当时 , ,∴点 的坐标为 ,∴OD=3, ,∴ ,∴ ,∴ ,∵轴,∴ ,同理 ,∴ ,∴, ,∵,∴ ,∵轴,∴,∴,∴ ,∵,∴ ,∵ ,∴ ,∴ ,∴点 ,同理点 , 由此得到 ,∴的坐标为 .故答案为: ,【点睛】本题主要考查了一次函数的性质,等腰三角形的性质,直角三角形的性质,根据题意得到规律是解题的关键.5、【解析】【分析】直接利用一次函数平移规律“上加下减”进而得出即可.【详解】解:∵一次函数的图像向上平移5个单位,∴所得图像的函数表达式为:故答案为:【点睛】本题考查了一次函数平移,掌握平移规律是解题的关键.三、解答题1、 (1)(4,0),(0,3)(2),y=﹣x+3(3)3或9【解析】【分析】(1)令x=0和y=0即可求出点A,B的坐标;(2)连接BC,设OC=x,则AC=BC=4﹣x,在Rt△BOC中,利用勾股定理求出x,再利用待定系数法求出直线BC的解析式即可;(3)先求出点P的坐标,根据三角形的面积公式即可求解.(1)解:令y=0,则x=4;令x=0,则y=3,故点A的坐标为(4,0),点B的坐标为(0,3).故答案为:(4,0),(0,3);(2)解:如图所示,连接BC,设OC=x,∵直线CD垂直平分线段AB,∴AC=CB=4﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,32+x2=(4﹣x)2,解得,∴,∴C(,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x+3;(3)解:如图,∵点A的坐标为(4,0),∴OA=4,∵OP=OA,∴OP=2,∴点P的坐标为(2,0),P′(﹣2,0),∴AP=2,AP′=6,∴S△ABP=AP•OB=×2×3=3S△ABP′=AP′•OB=×6×3=9, 综上:△ABP的面积为3或9.【点睛】本题考查了一次函数,勾股定理,解题的关键是掌握一次函数的性质.2、 (1)60(2)y=20x-40();(3)或【解析】【分析】(1)用甲车行驶0.5小时的路程30除以时间即可得到速度;(2)分别求出相应线段的两个端点的坐标,再利用待定系数法求函数解析式;(3)分两种情况讨论:将x=85代入AB的解析式,求出一个值;另一种情况是乙停止运动,两车还相距85千米.(1)解:甲车行驶的速度是(千米/小时),故答案为:60;(2)解:设甲出发x小时后被乙追上,根据题意:60x=80(x-0.5),解得x=2,∴甲出发2小时后被乙追上,∴点A的坐标为(2,0),∵,∴B(6.5,90),设AB的解析式为y=kx+b,∴,解得,∴AB的解析式为y=20x-40(); (3)解:根据题意得:20x-40=85或60x=480-85,解得x=或.∴两车相距85千米时x为或.【点睛】此题考查了一次函数的图象,一次函数的实际应用,利用待定系数法求函数解析式,并与行程问题的路程、时间、速度相结合,读出图形中的已知信息是关键,是一道综合性较强的函数题,有难度,同时也运用了数形结合的思想解决问题.3、 (1)(2)(3)13吨【解析】【分析】(1)当0<x≤8时,根据水费=用水量×1.5,即可求出y与x的函数关系式;(2)当x>8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y与x的函数关系式;(3)当0<x≤8时,y≤12,由此可知这个月该户用水量超过8吨,将y=23代入(2)中所求的关系式,求出x的值即可.(1)根据题意可知:当时,;(2)根据题意可知:当时,;(3)当时,,的最大值为(元,,该户当月用水超过8吨.令中,则,解得:.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.4、 (1)一次函数的表达式为;(2)点在直线AB上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y=kx+b得到关于k、b的方程组,然后解方程求出k与b的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将和代入,得,解得,,∴一次函数的表达式为(2)解:点C在直线AB上,理由:当时,,∴点在直线AB上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.5、 (1)(2),(3)或【解析】【分析】(1)由一次函数图象平移的性质得到k=2,再将点代入求出解析式;(2)分别求出y=0及x=0时的对应值,即可得到A、两点坐标;(3)由结合三角形的面积公式得到AP=2AO,即可得到点P坐标.(1)解:设一次函数的解析式为,一次函数图象与直线平行,,过点,∴,,一次函数解析式为;(2)解:把代入得,,,,把x=0代入得,,;(3)解:∵,,AP=2AO=2,-1-2=-3,-1+2=1,或.【点睛】此题考查了一次函数平移的性质,一次函数图象与坐标轴的交点坐标,一次函数与图形面积问题,正确掌握一次函数的综合知识是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共31页。试卷主要包含了如图所示,直线分别与轴等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习题,共26页。试卷主要包含了点A等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试练习,共26页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。