搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数定向攻克试题(含详解)

    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数定向攻克试题(含详解)第1页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数定向攻克试题(含详解)第2页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数定向攻克试题(含详解)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第二十一章 一次函数综合与测试练习题

    展开

    这是一份数学八年级下册第二十一章 一次函数综合与测试练习题,共35页。试卷主要包含了下列不能表示是的函数的是,当时,直线与直线的交点在等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、关于函数y=-2x+1,下列结论正确的是( )
    A.图像经过点 B.y随x的增大而增大
    C.图像不经过第四象限 D.图像与直线y=-2x平行
    2、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )

    A. B.
    C. D.
    3、如图,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,则下列说法正确的个数是(  )

    ①对于函数y=ax+b来说,y随x的增大而减小;②函数y=ax+d不经过第一象限;③方程ax+b=cx+d的解是x=4;④ d-b=4(a-c).
    A.1 B.2 C.3 D.4
    4、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是(  )

    A.两人出发1小时后相遇
    B.王明跑步的速度为8km/h
    C.陈启浩到达目的地时两人相距10km
    D.陈启浩比王明提前1.5h到目的地
    5、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为(  )
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    ﹣1
    0
    1
    2
    3

    y2

    ﹣5
    ﹣3
    ﹣1
    1
    3

    A. B. C. D.
    6、下列不能表示是的函数的是( )
    A.

    0
    5
    10
    15

    3
    3.5
    4
    4.5
    B.
    C.
    D.
    7、当时,直线与直线的交点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8、一次函数,,且随的增大而减小,则其图象可能是( )
    A. B.
    C. D.
    9、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
    A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
    10、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是(  )
    A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、函数和的图象相交于点,则方程的解为______.

    2、直线y=2x-4与两坐标轴围成的三角形面积为___________________.
    3、一条笔直的公路上顺次有A,B,C三地,甲车从B地出发匀速向C地行驶,同时乙车从B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头将速度提高了50% 向C地行驶,两车到达C地均停止运动.在两车行驶的过程中,甲乙两车之间的距离s(千米)与行驶时间t (小时)之间的函数图象如图所示,当甲乙两车第一次相遇时,距A地的距离为_________ 千米.

    4、在平面直角坐标系中,一次函数和的图象如图所示,则不等式的解集为______

    5、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为_________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面角坐标系中,点B在y轴的负半轴上(0,﹣2),过原点的直线OC与直线AB交于C,∠COA=∠OCA=∠OBA=30°

    (1)点C坐标为    ,OC=   ,△BOC的面积为    ,=   ;
    (2)点C关于x轴的对称点C′的坐标为    ;
    (3)过O点作OE⊥OC交AB于E点,则△OAE的形状为    ,请说明理由;
    (4)在坐标平面内是否存在点F使△AOF和△AOB全等,若存在,请直接写出F坐标,请说明理由.
    2、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:

    (1)货车的速度为______km/h,轿车的速度为______km/h;
    (2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;
    (3)货车出发______h,与轿车相距30km.
    3、一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t(小时),航行的路程为s(千米),s与t的函数图像如图所示.

    (1)甲乙两地相距    千米;
    (2)轮船顺水航行时航行的路程s关于所用时间t的函数关系式为    ,定义域是    ;
    (3)如果轮船从乙地逆水航行返回到甲地时的速度为20千米/小时,那么点M的坐标是    .
    4、如图,在平面直角坐标系中,直线AB为y=﹣x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).

    (1)求点B的坐标及点O到直线AB的距离;
    (2)求△ABP的面积(用含n的代数式表示);
    (3)当S△ABP=时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.
    5、A、B两地相距20千米,甲、乙两人某日中午12点同时从A地出发匀速前往B地,甲的速度是每小时4千米,如图,线段OM反映了乙所行的路程s与所用时间t之间的函数关系,根据提供的信息回答下列问题:

    (1)乙由A地前往B地所行的路程s与所用时间t之间的函数解析式是    ,定义域是    ;
    (2)在图中画出反映甲所行驶的路程s与所用时间t之间的函数图象;
    (3)下午3点时,甲乙两人相距    千米.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据一次函数的性质对各选项进行逐一判断即可.
    【详解】
    解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;
    B、由于k=−2<0,则y随x增大而减小,故本选项错误;
    C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;
    D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;
    故选:D.
    【点睛】
    本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
    2、C
    【解析】
    【分析】
    由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
    【详解】
    解:令直线中,得到,故,
    令直线中,得到,故,
    由勾股定理可知:,
    ∵,且,
    ∴,,
    过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:

    ∵为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    同理,∵为等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    设直线CD的解析式为:y=kx+b,代入和,
    得到:,解得,
    ∴CD的解析式为:,
    与直线联立方程组,
    解得,故E点坐标为,
    故选:C.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
    3、C
    【解析】
    【分析】
    仔细观察图象:①观察函数图象可以直接得到答案;
    ②观察函数图象可以直接得到答案;
    ③根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案;
    ④根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案.
    【详解】
    解:由图象可得,对于函数y=ax+b来说,y随x的增大而减小故①正确;
    函数y=ax+d图象经过第一,三,四象限,即不经过第二象限,故②不正确,
    一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,所以方程ax+b=cx+d的解是x=4;故③正确;
    ∵一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,
    ∴4a+b=4c+d
    ∴d-b=4(a-c),故④正确.
    综上所述,正确的结论有3个.
    故选:C.
    【点睛】
    本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.
    4、C
    【解析】
    【分析】
    根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.
    【详解】
    解:由图象可知,
    两人出发1小时后相遇,故选项A正确;
    王明跑步的速度为24÷3=8(km/h),故选项B正确;
    陈启浩的速度为:24÷1-8=16(km/h),
    陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),
    故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;
    陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;
    故选:C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
    5、C
    【解析】
    【分析】
    利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.
    【详解】
    解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),
    ∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),
    ∴关于x,y的二元一次方程组的解为.
    故选:C.
    【点睛】
    本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.
    6、B
    【解析】
    【分析】
    根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
    【详解】
    解:A、根据图表进行分析为一次函数,设函数解析式为:,
    将,,,
    分别代入解析式为:

    解得:,,
    所以函数解析式为:,
    ∴y是x的函数;
    B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
    C、D选项从图象及解析式看可得y是x的函数.
    故选:B.
    【点睛】
    题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
    7、B
    【解析】
    【分析】
    根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
    【详解】
    解:一次函数中,,
    ∴函数图象经过一二四象限
    ∵在一次函数中,,
    ∴直线经过一二三象限
    函数图象如图

    ∴直线与的交点在第二象限
    故选:.
    【点睛】
    本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
    8、B
    【解析】
    【分析】
    根据一次函数的图象是随的增大而减小,可得,再由,可得,即可求解.
    【详解】
    解:一次函数的图象是随的增大而减小,
    ∴ ,

    又,

    一次函数的图象经过第二、三、四象限.
    故选:B
    【点睛】
    本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    9、A
    【解析】
    【分析】
    先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.
    【详解】
    ∵正比例函数y=3x中,k=3>0,
    ∴y随x的增大而增大,
    ∵x1>x2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
    10、D
    【解析】
    【分析】
    根据题意和一次函数的性质,可以解答本题.
    【详解】
    解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,
    ∴b=-1,k>0,
    故选:D.
    【点睛】
    本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    二、填空题
    1、
    【解析】
    【分析】
    由题意知,方程的解为其交点的横坐标,进而可得结果.
    【详解】
    解:由题意知的解为两直线交点的横坐标
    故答案为:.
    【点睛】
    本题考查了一次函数图象的交点与一次方程解的关系.解题的关键在于理解一次函数图象的交点与一次方程解的关系.
    2、
    【解析】
    【分析】
    画出一次函数的图象,再求解一次函数与坐标轴的交点的坐标,再利用三角形的面积公式进行计算即可.
    【详解】
    解:如图,令 则
    令 则 解得



    故答案为:4
    【点睛】
    本题考查的是一次函数与坐标轴的交点坐标,一次函数与坐标轴围成的三角形的面积,利用数形结合的方法解题是解本题的关键.
    3、432
    【解析】
    【分析】
    设甲的速度为v甲,乙的速度为v乙,根据题意可得v甲+v乙=100①,可求出乙追上甲的时间为4.8h,根据题意可得4.8×(1+50%)V乙=2V乙+7.8V甲②,联立①②求出两车的速度即可解答.
    【详解】
    解:如图:

    设甲的速度为v甲,乙的速度为v乙,
    OD段:两人的速度和为:200÷2=100(km/h),
    即v甲+v乙=100①,
    此时乙休息1h,则E处的横坐标为:2+1=3,
    则乙用了:7.8-3=4.8(h)追上甲,
    则4.8×(1+50%)V乙=2V乙+7.8V甲②,
    联立①②得V甲=40,V乙=60,
    则第一次相遇是在7.8h时,
    距离A地:4.8×(1+50%)×60=432(km).
    故答案为:432.
    【点睛】
    本题主要考查了一次函数的应用.理解函数图象的点的坐标的实际意义,从而得到甲乙两车的行驶的距离和速度是解题的关键.
    4、
    【解析】
    【分析】
    根据函数图象写出一次函数在上方部分的x的取值范围即可.
    【详解】
    解:一次函数和的图象交于点
    所以,不等式的解集为.
    故答案为:
    【点睛】
    本题考查了一次函数的交点问题及不等式,数形结合是解决此题的关键.
    5、3或1
    【解析】
    【分析】
    分两种情况:①当点F在DC之间时,作出辅助线,求出点F的坐标即可求出k的值;②当点F与点C重合时求出点F的坐标即可求出k的值.
    【详解】
    解:①如图,作AG⊥EF交EF于点G,连接AE,

    ∵AF平分∠DFE,
    ∴DF=AG=2
    在RT△ADF和RT△AGF中,

    ∴RT△ADF≌RT△AGF
    ∴DF=FG
    ∵点E是BC边的中点,
    ∴BE=CE=1
    ∴AE=

    ∴ 在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2-DF)2+1,
    解得,
    ∴点,
    把点F的坐标代入y=kx得:2=,解得k=3;
    ②当点F与点C重合时,
    ∵四边形ABCD是正方形,
    ∴AF平分∠DFE,
    ∴F(2,2),
    把点F的坐标代入y=kx得:2=2k,解得k=1.
    故答案为:1或3.
    【点睛】
    本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k.
    三、解答题
    1、 (1)(3,),2,3,
    (2)(3,)
    (3)等边三角形,见解析
    (4)存在,(0,)或(0,﹣)或(2,)或(2,﹣).
    【解析】
    【分析】
    (1)先根据等角对等边,确定OB=OC=,再通过构造垂线法,分别求出相关线段的长,根据点所在象限,确定点的坐标;根据面积公式,选择适当的底边计算即可;利用同底的两个三角形面积之比等于对应高之比计算即可;
    (2)根据点关于x轴对称的特点,直接写出坐标即可;
    (3)根据三个角是60°的三角形是等边三角形判定即可;
    (4)利用全等三角形的判定定理,综合运用分类思想求解.
    (1)
    解:(1)∵点B(0,﹣2),
    ∴OB=,
    ∵∠COA=∠OCA=∠OBA=30°,
    ∴OB=OC=,
    过点C作CD⊥x轴于点D,

    ∴CD==,DO==3,
    ∵点C在第一象限;
    ∴C(3,),
    ∴=;
    ∴,
    故答案为:(3,),2,3,.
    (2)
    ∵C(3,),点C与点C'关于x轴对称,
    ∴C'(3,﹣).
    故答案为:(3,﹣).
    (3)
    ∵OE⊥OC,
    ∴∠COE=90°,

    ∵∠COA=30°,
    ∴∠AOE=60°,
    ∵∠OAE=60°,
    ∴∠AOE=∠OAB=60°,
    ∴△OAE是等边三角形,
    故答案为:等边三角形.
    (4)
    解:①如图1,当△AOB≌△AOF时,
    ∵OB=,
    ∴OF=,
    ∴(0,),(0,﹣),

    ②如图2,当△AOB≌OAF时,
    设直线AB的解析式为y=kx+b,
    ∴,
    解得,
    ∴直线AB的解析式为y=x,
    令y=0,得x=2,
    ∴点A的坐标为(2,0),
    ∵△AOB≌OAF,
    ∴OB=AF=,
    ∴F3(2,),F4(2,﹣),

    综上所述,存在点F,且点F的坐标是(0,)或(0,﹣)或(2,)或(2,﹣).
    【点睛】
    本题考查了等角对等边,坐标与象限,勾股定理,点的对称,函数解析式,等边三角形的判定,三角形全等的判定,分类思想,熟练掌握待定系数法,灵活运用三角形全等的判定是解题的关键.
    2、 (1)80,100
    (2)当时,;当时,;当时,;当时,,图见解析
    (3)或
    【解析】
    【分析】
    (1)结合图象可得经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,根据题意列出方程求解即可得;
    (2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;
    (3)将代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.
    (1)
    解:由图象可得:经过两个小时,两车相遇,
    设货车的速度为,则轿车的速度为,
    ∴,
    解得:,,
    ∴货车的速度为,则轿车的速度为,
    故答案为:80;100;
    (2)
    当时,图象经过,点,
    设直线解析式为:,代入得:

    解得:,
    ∴当时,;
    分钟小时,
    ∵两车相遇后休息了24分钟,
    ∴当时,;
    当时,轿车距离甲地的路程为:,货车距离乙地的路程为:,
    轿车到达甲地还需要:,
    货车到达乙地还需要:,
    ∴当时,;
    当时,;
    当时,;
    当时,;
    当时,;
    ∴函数图象分别经过点,,,
    作图如下:

    (3)
    ①当时,令可得:

    解得:;
    ②当时,令可得:

    解得:;
    ③当时,令可得:

    解得::,不符合题意,舍去;
    综上可得:货车出发或,与轿车相距30km,
    故答案为:或.
    【点睛】
    题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.
    3、 (1)60
    (2),
    (3)
    【解析】
    【分析】
    (1)根据函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,由此即可得;
    (2)先判断出轮船顺水航行段对应的是图象中部分,再设此时关于的函数关系式为,利用待定系数法即可得;
    (3)根据图象可得返回时,行驶到点处所用时间,从而可得从乙地行驶到点的路程,由此即可得.
    (1)
    解:由函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,
    故答案为:60;
    (2)
    解:由题意得:轮船顺水航行段对应的是图象中部分,
    设此时关于的函数关系式为,
    将点代入得:,解得,
    则关于的函数关系式为,定义域为,
    故答案为:,;
    (3)
    解:由图象可知,返回时,行驶到点处所用时间为(小时),
    则从乙地到点的路程为(千米),
    所以点的纵坐标为,
    所以点的坐标为,
    故答案为:.
    【点睛】
    本题考查了利用待定系数法求正比例函数的解析式、从函数图象获取信息,读懂函数图象是解题关键.
    4、 (1)B(4,0),
    (2)
    (3)(5,7)或(8,3)或(,)
    【解析】
    【分析】
    (1)求出直线AB的解析式,可求点B坐标,由面积法可求解;
    (2)求出点D坐标,由三角形的面积公式可求解;
    (3)先计算当S△ABP=时,P的坐标,以PB为边在第一象限作等腰直角三角形BPC,分三种情况讨论:分别以三个顶点为直角顶点画三角形,根据图形可得C的坐标.
    (1)
    解:∵直线AB为y=x+b交y轴于点A(0,3),
    ∴b=3,AO=3,
    ∴直线AB解析式为:y=x+3,
    令y=0,则0=x+3,x=4,
    ∴B(4,0),
    ∴OB=4,
    ∴AB==5,
    ∴S△AOB=×OA×OB=×AB×点O到直线AB的距离,
    ∴点O到直线AB的距离==;
    (2)
    ∵点D在直线AB上,
    ∴当x=1时,y=,即点D(1,),
    ∴PD=n-,
    ∵OB=4,
    ∴S△ABP==;
    (3)
    当S△ABP=时,,解得n=4,
    ∴点P(1,4),
    ∵E(1,0),
    ∴PE=4,BE=3,
    第1种情况,如图,当∠CPB=90°,BP=PC时,过点C作CN⊥直线x=1于点N.

    ∵∠CPB=90°,
    ∴∠CPN+∠BPE=90°,又∠CPN+∠PCN=90°,
    ∴∠BPE=∠PCN,
    又∵∠CNP=∠PEB=90°,BP=PC,
    ∴△CNP≌△PEB(AAS),
    ∴PN=EB=3,PE=CN=4,
    ∴NE=NP+PE=3+4=7,
    ∴C(5,7);
    第2种情况,如图,当∠PBC=90°,BP=BC时,过点C作CF⊥x轴于点F.

    同理可证:△CBF≌△BPE(AAS),
    ∴CF=BE=3,BF=PE=4,
    ∴OF=OB+BF=4+4=8,
    ∴C(8,3);
    第3种情况,如图3,当∠PCB=90°,CP=CB时,
    过点C作CH⊥BE,垂足为H,过点P作PG⊥CH,垂足为G,

    同理可证:△PCG≌△CBH(AAS),
    ∴CG=BH,PG=CH,
    ∵PE=4,BE=3,设CG=BH=x,PG=CH=y,
    则PE=GH=x+y=4,BE=PG-BH=y-x=3,
    解得:x=,y=,
    ∴C(,),
    ∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(5,7)或(3,8)或(,).
    【点睛】
    本题是一次函数综合题,考查了待定系数法,三角形面积公式,全等三角形的判定和性质,利用分类讨论思想解决问题是解题的关键.
    5、 (1)s=t;0≤t≤6
    (2)见解析
    (3)2
    【解析】
    【分析】
    (1)设直线的解析式为,将代入即可求出,由图象可直接得出的范围;
    (2)根据甲的速度,可得出行驶时间,得到终点时点的坐标,作出直线即可;
    (3)用甲行驶的路程减去乙行驶的路程即可.
    (1)
    解:设直线的解析式为,且,
    ,解得;

    由图象可知,;
    故答案为:;;
    (2)
    解:甲的速度是每小时4千米,
    甲所用的时间(小时),

    图象如下图所示:

    (3)
    解:下午3点时,甲、乙两人之间的距离为:.
    故答案为:2.
    【点睛】
    本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

    相关试卷

    冀教版八年级下册第二十一章 一次函数综合与测试习题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试习题,共19页。

    冀教版八年级下册第二十一章 一次函数综合与测试综合训练题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共29页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。

    初中数学第二十一章 一次函数综合与测试练习:

    这是一份初中数学第二十一章 一次函数综合与测试练习,共26页。试卷主要包含了如图,一次函数y=kx+b等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map