初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共29页。试卷主要包含了如图,已知点K为直线l,一次函数的图象一定经过等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-2、点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为( )A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y23、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )A. B. C. D.4、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )A.小于0 B.等于0 C.大于0 D.非负数5、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=46、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有( )①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车A.0个 B.1个 C.2个 D.3个7、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )A.甲队的挖掘速度大于乙队的挖掘速度B.开挖2h时,甲、乙两队所挖的河渠的长度相差8mC.乙队在的时段,与之间的关系式为D.开挖4h时,甲、乙两队所挖的河渠的长度相等8、如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用表示小球滚动的时间,表示小球的速度.下列能表示小球在斜坡上滚下时与的函数关系的图象大致是( )A. B.C. D.9、一次函数的图象一定经过( )A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限10、已知点,都在直线上,则与的大小关系为( )A. B. C. D.无法比较第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、像h=0.5n,T=-2t,l=2πr这些函数解析式都是______与______的积的形式.一般地,形如y=kx(k是常数,k≠0)的函数,叫做______函数,其中k叫做______.2、将一次函数向上平移5个单位长度后得到直线AB,则平移后直线AB对应的函数表达式为______.3、将一次函数的图像向上平移5个单位后,所得图像的函数表达式为______.4、已知函数y=kx的图像经过二、四象限,且不经过,请写出一个符合条件的函数解析式______.5、如图,已知函数和的图象交于点,则根据图象可得,二元一次方程组的解是_______.三、解答题(5小题,每小题10分,共计50分)1、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:A种产品B种产品成本价(元/件)400300销售价(元/件)560450(1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?2、【数学阅读】如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.小明的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.【推广延伸】如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.【解决问题】如图4,在平面直角坐标系中,点C在x轴正半轴上,点B在y轴正半轴上,且AB=AC.点B到x轴的距离为3.(1)点B的坐标为_____________;(2)点P为射线CB上一点,过点P作PE⊥AC于E,点P到AB的距离为d,直接写出PE与d的数量关系_______________________________;(3)在(2)的条件下,当d=1,A为(-4,0)时,求点P的坐标.3、如图,平面直角坐标系xOy中,点A、B的坐标分别为A(a,0),B(0,b),其中a,b满足+b2﹣8b+16=0,点P在y轴上,且在B点上方,PB=m(m>0),以AP为边作等腰直角△APM,∠APM=90°,PM=PA,点M落在第一象限.(1)a= ;b= ;(2)求点M的坐标(用含m代数式表示);(3)若射线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.4、如图,已知直线y=﹣x+3与x轴、y轴分别相交于点A、B,将△AOB沿直线CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度,并求出此时直线BC的表达式;(3)过点B作直线BP与x轴交于点P,且使OP=OA,求△ABP的面积.5、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.(1)分别求出这两个函数的解析式;(2)点在轴上,且是等腰三角形,请直接写出点的坐标. -参考答案-一、单选题1、C【解析】略2、B【解析】【分析】由直线y=-2x的解析式判断k=−2<0,y随x的增大而减小,再结合点的坐标特征解题即可.【详解】解:∵一次函数中一次项系数k=-2<0,∴y随x的增大而减小,∵-4<-1,∴y1<y2.故选B.【点睛】本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.3、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);即,,;以点为圆心、长为半径画弧,与轴正半轴交于点,故,则,点C的坐标为;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.4、C【解析】【分析】一次函数过第一、二、三象限,则,根据图象结合性质可得答案.【详解】解:如图,函数的图象经过第一、二、三象限,则函数的图象与轴交于正半轴, 故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.5、C【解析】【分析】点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.【详解】解: 点K为直线l:y=2x+4上一点,设 将点K向下平移2个单位,再向左平移a个单位至点K1, 将点K1向上平移b个单位,向右平1个单位至点K2, 点K2也恰好落在直线l上, 整理得: 故选C【点睛】本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.6、C【解析】【分析】求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx,∴6k=300,解得k=50,∴=50x,∴甲车的速度为,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h)到达城,∴②错误;设,∴,∴,∴,∵,∴,即甲行驶4小时,乙追上甲,∴③正确;故选C.【点睛】本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.7、D【解析】【分析】根据图象依次分析判断.【详解】解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;开挖2h时,乙队所挖的河渠的长度为30m,甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;甲队开挖4h时,所挖河渠的长度为,乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;故选:D.【点睛】此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.8、C【解析】【分析】静止开始沿一个斜坡滚下,其速度每秒增加的值相同即可判断.【详解】解:由题意得,小球从静止开始,设速度每秒增加的值相同为.,即.故是正比例函数图象的一部分.故选:C.【点睛】本题考查了函数关系式,这是一个跨学科的题目,实际上是利用“即时速度初始速度加速度时间”,解题的关键是列出函数关系式.9、C【解析】【分析】k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限.【详解】解:∵k=-2<0,b=-3<0,∴函数的图象经过第二、三、四象限,故选:C.【点睛】本题考查了一次函数的性质,k>0,函数一定经过第一,三象限,k<0,函数一定经过第二,四象限,再根据直线与y轴的交点即可得出函数所过的象限,这是解题的关键.10、A【解析】【分析】根据一次函数的增减性分析,即可得到答案.【详解】∵直线上,y随着x的增大而减小又∵ ∴ 故选:A.【点睛】本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.二、填空题1、 常数 自变量 正比例 比例系数【解析】略2、y=x+7【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把直线y=x+2向上平移5个单位长度后所得直线的解析式为:y=x+2+5,即y=x+7.∴直线AB对应的函数表达式为y=x+7.故答案为:y=x+7.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3、【解析】【分析】直接利用一次函数平移规律“上加下减”进而得出即可.【详解】解:∵一次函数的图像向上平移5个单位,∴所得图像的函数表达式为:故答案为:【点睛】本题考查了一次函数平移,掌握平移规律是解题的关键.4、(不唯一)【解析】【分析】将(-2,2)代入y=kx中,求得k=-1,只要符合条件的函数解析式中的k≠-1即可.【详解】解:将(-2,2)代入y=kx中,得:2=-2k,解得:k=-1,∴符合符合条件的函数解析式可以为y=-2x,答案不唯一,故答案为:y=-2x(不唯一).【点睛】本题考查正比例函数的图象与性质,熟练掌握正比例函数的图象上点的坐标特征是解答的关键.5、【解析】【分析】根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.【详解】解:由图像可知二元一次方程组的解是,故答案为:【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.三、解答题1、 (1)A种产品生产400件,B种产品生产200件(2)A种产品生产1000件时,利润最大为460000元【解析】【分析】(1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;(2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.(1)解:设A种产品生产x件,则B种产品生产(600-x)件,由题意得:,解得:x=400,600-x=200,答:A种产品生产400件,B种产品生产200件.(2)解:设A种产品生产x件,总利润为w元,由题意得:由,得:,因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.【点睛】本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.2、推广延伸:PD=PE+CF,证明见解析;解决问题:(1)(0,3);(2)PE=3+d或PE=3-d;(3)或【解析】【分析】推广延伸:连接AP,由△ABP与△ACP面积之差等于△ABC的面积可以证得三线段间的关系;解决问题:(1)由点B到x轴的距离及点B在y轴正半轴上即可得到点B的坐标;(2)分两种情况:当点P在CB延长线上时,由推广延伸的结论即可得PE与d的关系;当点P在线段CB上时,由阅读材料中的结论可得PE与d的关系;(3)由点A的坐标及AB=AC可求得点C的坐标,从而可求得直线CB的解析式;分两种情况:点P在CB延长线上及当点P在线段CB上,由(2)中结论即可求得点P的纵坐标,从而由点P在直线CB上即可求得点P的横坐标,从而得到点P的坐标.【详解】推广延伸:猜想:PD=PE+CF证明如下:连接AP,如图3∵即∴AB=AC∴PD-CF=PE∴PD=PE+CF解决问题:(1)∵点B在y轴正半轴上,点B到x轴的距离为3∴B(0,3)故答案为:(0,3)(2)当点P在CB延长线上时,如图由推广延伸的结论有:PE=OB+PF=3+d;当点P在线段CB上时,如图由阅读材料中的结论可得PE=OB-PF=3-d;故答案为:PE=3+d或PE=3-d(3)∵A(-4,0),B(0,3)∴OA=4,OB=3由勾股定理得:∴AC=AB=5∴OC=AC-OA=5-4=1∴C(1,0)设直线CB的解析式为y=kx+b(k≠0)把C、B的坐标分别代入得:解得:即直线CB的解析式为y=-3x+3由(2)的结论知:PE=3+1=4或PE=3-1=2∵点P在射线CB上∴点P的纵坐标为正,即点P的纵坐标为4或2当y=4时,-3x+3=4,解得:,即点P的坐标为;当y=2时,-3x+3=2,解得:,即点P的坐标为综上:点P的坐标为或【点睛】本题是材料阅读题,考查了等腰三角形的性质及一次函数的图象与性质,读懂材料的内容并能灵活运用于新的情境中是本题的关键.3、 (1)4;4(2)(m+4,m+8)(3)不变,(﹣4,0)【解析】【分析】(1)将进行变形,然后根据二次根式有意义的条件及平方的非负性质即可进行求解;(2)过点M作轴于点N,利用同角的余角相等可得,根据全等三角形的判定和性质可得,,,结合图象即可得出结果;(3)设直线MB的解析式为,由(2)结论将点M的坐标代入整理可得,根据题意可得:,将其代入可确定函数解析式,即可确定点Q的坐标.(1),则,∵,,∴,,解得:,,故答案为:4;4;(2)过点M作轴于点N,∵,∴,∵,∴,在和中,,∴,∴,,∴,∴点M的坐标为;(3)点Q的坐标不变,理由如下:设直线MB的解析式为,则,整理得,,∵,∴,解得:,∴直线MB的解析式为,∴无论m的值如何变化,点Q的坐标都不变,为.【点睛】题目主要考查二次根式有意义的条件及平方的非负性质,全等三角形的判定和性质,利用待定系数法确定一次函数解析式等,理解题意,综合运用这些知识点是解题关键.4、 (1)(4,0),(0,3)(2),y=﹣x+3(3)3或9【解析】【分析】(1)令x=0和y=0即可求出点A,B的坐标;(2)连接BC,设OC=x,则AC=BC=4﹣x,在Rt△BOC中,利用勾股定理求出x,再利用待定系数法求出直线BC的解析式即可;(3)先求出点P的坐标,根据三角形的面积公式即可求解.(1)解:令y=0,则x=4;令x=0,则y=3,故点A的坐标为(4,0),点B的坐标为(0,3).故答案为:(4,0),(0,3);(2)解:如图所示,连接BC,设OC=x,∵直线CD垂直平分线段AB,∴AC=CB=4﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,32+x2=(4﹣x)2,解得,∴,∴C(,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x+3;(3)解:如图,∵点A的坐标为(4,0),∴OA=4,∵OP=OA,∴OP=2,∴点P的坐标为(2,0),P′(﹣2,0),∴AP=2,AP′=6,∴S△ABP=AP•OB=×2×3=3S△ABP′=AP′•OB=×6×3=9, 综上:△ABP的面积为3或9.【点睛】本题考查了一次函数,勾股定理,解题的关键是掌握一次函数的性质.5、 (1)正比例函数的解析式为:,一次函数的解析式为:(2)或或或【解析】【分析】(1)把点代入可得,再由,可得点 ,即可求解;(2)分三种情况:当OP=OA=5时,当AP=OA时,当AP=OP时,即可求解.(1)解:∵一次函数的图象与轴交于点,与正比例函数的图象相交于点,∴,解得: ∴正比例函数的解析式为:,∵,∴ ,∵,∴ ,∴点 ,把点, 代入,得: ,解得: ,∴一次函数的解析式为:;(2)解:当OP=OA=5时,点的坐标为或;当AP=OA时,过点A作 轴于点C,∴OC=PC=3,∴OP=6,∴点;当AP=OP时,过点P作PD⊥OA于点D,过点D作 轴于点E,∴点D为AO的中点,即 ,∵点,∴点 ,∴ ,设点 ,则 ,∴ ,∵ ,∴ ,即 ,解得: 或 (舍去)∴点 ,综上所述,点P的坐标为或或或.【点睛】本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共25页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。
这是一份冀教版第二十一章 一次函数综合与测试课堂检测,共30页。试卷主要包含了下列函数中,属于正比例函数的是,巴中某快递公司每天上午7等内容,欢迎下载使用。
这是一份2021学年第二十一章 一次函数综合与测试达标测试,共28页。试卷主要包含了如图所示,直线分别与轴等内容,欢迎下载使用。