![2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数专题攻克试卷第1页](http://img-preview.51jiaoxi.com/2/3/12764905/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数专题攻克试卷第2页](http://img-preview.51jiaoxi.com/2/3/12764905/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数专题攻克试卷第3页](http://img-preview.51jiaoxi.com/2/3/12764905/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试课堂检测
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课堂检测,共27页。试卷主要包含了若一次函数,当时,直线与直线的交点在,如图,已知点K为直线l,已知正比例函数的图像经过点等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是( )A.两人出发1小时后相遇B.王明跑步的速度为8km/hC.陈启浩到达目的地时两人相距10kmD.陈启浩比王明提前1.5h到目的地2、关于一次函数 ,下列说法不正确的是( )A.图象经过点(2,0) B.图象经过第三象限 C.函数y随自变量x的增大而减小 D.当x≥2时,y≤03、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )A. B.C. D.4、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)5、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )A. B. C. D.6、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )A.且 B.且C.且 D.且7、当时,直线与直线的交点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=49、已知正比例函数的图像经过点(2,4)、(1,)、(1,),那么与的大小关系是( )A. B. C. D.无法确定10、平面直角坐标系中,点的坐标为,一次函数的图像与轴、轴分别相交于点、,若点在的内部,则的取值范围为( )A.或 B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线l是一次函数y=kx+b的图象,填空:(1)b=______,k=______;(2)当x=30时,y=______;(3)当y=30时,x=______.2、直线y1=-x+m和y2=2x+n的交点如图,则不等式-x+m<2x+n的解集是_____.3、函数和的图象相交于点,则方程的解为______.4、像y=x+1,s=-3t+1这些函数解析式都是常数k与自变量的______与常数b的______的形式.一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做______函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.5、请写出一个过第二象限且与轴交于点的直线表达式___.三、解答题(5小题,每小题10分,共计50分)1、直线,与直线相交于点.(1)求直线的解析式;(2)横、纵坐标都是整数的点叫做整点.记直线与直线和轴围成的区域内(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内的整点恰好为2个,结合函数图象,求的取值范围.2、已知一次函数y1=ax+b,y2=bx+a(ab≠0,且a≠b).(1)若y1过点(1,2)与点(2,b﹣a﹣3)求y1的函数表达式;(2)y1与y2的图象交于点A(m,n),用含a,b的代数式表示n;(3)设y3=y1﹣y2,y4=y2﹣y1,当y3>y4时,求x的取值范围.3、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.(1)则点A的坐标为_______,点B的坐标为______;(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)②试求线段OQ长的最小值.4、已知直线与x轴交于点,与y轴相交于点,直线与y轴交于点C,与x轴交于点D,连接BD.(1)求直线的解析式;(2)直线上是否存在一点E,使得,若存在求出点E的坐标,若不存在,请说明理由.5、如图,在平面直角坐标系中,直线与直线相交于点.(1)求m,b的值;(2)求的面积;(3)点P是x轴上的一点,过P作垂于x轴的直线与的交点分别为C,D,若P点的横坐标为n,当时直接写出n的取值范围. -参考答案-一、单选题1、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A正确;王明跑步的速度为24÷3=8(km/h),故选项B正确;陈启浩的速度为:24÷1-8=16(km/h),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.2、B【解析】【分析】当 时, ,可得图象经过点(2,0);再由 ,可得图象经过第一、二、四象限;函数y随自变量x的增大而减小;然后根据 时, ,可得当x≥2时,y≤0,即可求解.【详解】解:当 时, ,∴图象经过点(2,0),故A正确,不符合题意;∵ ,∴图象经过第一、二、四象限,故B错误,符合题意;∴函数y随自变量x的增大而减小,故C正确,不符合题意;当 时, ,∴当x≥2时,y≤0,故D正确,不符合题意;故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.3、B【解析】【分析】利用一次函数的性质逐项进行判断即可解答.【详解】解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;故选B.【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.4、B【解析】【分析】根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.【详解】解:根据题意得,菜园三边长度的和为24m,即,所以,由y>0得,,解得,当时,即,解得,∴,故选:B.【点睛】题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.5、C【解析】【分析】根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.【详解】解:函数的图象与函数的图象互相平行,∴,∴,当时,,选项A不在直线上;当时,,选项B不在直线上;当时,,选项C在直线上;当时,,选项D不在直线上;故选:C.【点睛】题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.6、D【解析】【分析】根据一次函数图象与系数的关系解答即可.【详解】解:一次函数、是常数,的图象不经过第三象限,且,故选:D.【点睛】本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7、B【解析】【分析】根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.【详解】解:一次函数中,,∴函数图象经过一二四象限∵在一次函数中,,∴直线经过一二三象限函数图象如图∴直线与的交点在第二象限故选:.【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.8、C【解析】【分析】点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.【详解】解: 点K为直线l:y=2x+4上一点,设 将点K向下平移2个单位,再向左平移a个单位至点K1, 将点K1向上平移b个单位,向右平1个单位至点K2, 点K2也恰好落在直线l上, 整理得: 故选C【点睛】本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.9、A【解析】【分析】先求出正比例函数解析式根据正比例函数的图象性质,当k<0时,函数随x的增大而减小,可得y1与y2的大小.【详解】解:∵正比例函数的图像经过点(2,4)、代入解析式得解得∴正比例函数为∵<0,∴y随x的增大而减小,由于-1<1,故y1<y2.故选:A.【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数的图象,当k<0时,y随x的增大而减小是解题关键.10、C【解析】【分析】由求出A,B的坐标,根据点的坐标得到点在直线上,求出直线与y轴交点C的坐标,解方程组求出交点E的坐标,即可得到关于m的不等式组,解之求出答案.【详解】解:当中y=0时,得x=-9;x=0时,得y=12,∴A(-9,0),B(0,12),∵点的坐标为,当m=1时,P(3,0);当m=2时,P(6,-4),设点P所在的直线解析式为y=kx+b,将(3,0),(6,-4)代入,∴,∴点在直线上,当x=0时,y=4,∴C(0,4),,解得,∴E(-3,8),∵点在的内部,∴,∴-1<m<0,故选:C..【点睛】此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点在直线上是解题的关键.二、填空题1、 2 18 -42【解析】略2、x<1【解析】略3、【解析】【分析】由题意知,方程的解为其交点的横坐标,进而可得结果.【详解】解:由题意知的解为两直线交点的横坐标故答案为:.【点睛】本题考查了一次函数图象的交点与一次方程解的关系.解题的关键在于理解一次函数图象的交点与一次方程解的关系.4、 积 和 一次【解析】略5、(答案不唯一)【解析】【分析】因为直线过第二象限,与y轴交于点(0,-3),则b=-3.写一个满足题意的直线表达式即可【详解】解:直线过第二象限,且与轴交于点,,,直线表达式为:.故答案为:(答案不唯一).【点睛】本题考查了一次函数的图像和性质,解题的关键是熟记一次函数的图像和性质.三、解答题1、 (1)直线为;(2)①当时,整点个数为1个,为;②的取值范围为或【解析】【分析】(1)根据待定系数法求得即可;(2)①当k=1时代入点A坐标即可求出直线解析式,进而分析出整点个数;②当k<0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k的值;当k>0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k的值,根据图形即可求得k的取值范围.(1)解:直线过点.,直线为.(2)解:①当时,,把代入得,解得:,,如图1,区域内的整点个数为1个,为.②如图2,若,当直线过,时,.当直线过,时,.,如图3,若,当直线过,时,.当直线过,时,..综上,若区域内的整点恰好为2个,的取值范围为或.【点睛】此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.2、 (1)y1=﹣x+3(2)n=a+b(3)当a>b时,x>1;当a<b时,x<1【解析】【分析】(1)把(1,2)、(2,b-a-3)分别代入y1=ax+b得到a、b的方程组,然后解方程组得到y1的函数表达式;(2)把A(m,n)分别代入y1=ax+b和y2=bx+a中得到,先利用加减消元法求出m,然后得到n与a、b的关系式;(3)先用a、b表示y3和y4,利用y3>y4得到(a-b)x+b-a>(b-a)x+a-b,然后解不等式即可.(1)解:把(1,2)、(2,b﹣a﹣3)分别代入y1=ax+b得,解得,∴y1的函数表达式为y1=﹣x+3;(2)解:∵y1与y2的图象交于点A(m,n),∴,∴m=1,n=a+b;(3)解:y3=y1﹣y2=ax+b﹣(bx+a)=(a﹣b)x+b﹣a,y4=y2﹣y1=bx+a﹣(ax+b)=(b﹣a)x+a﹣b,∵y3>y4,∴(a﹣b)x+b﹣a>(b﹣a)x+a﹣b,整理得(a﹣b)x>a﹣b,当a>b时,x>1;当a<b时,x<1.【点睛】本题考查了待定系数法求一次函数解析式:设一次函数解析式为y=kx+b(k≠0),再把两组对应量代入,然后解关于k,b的二元一次方程组.从而得到一次函数解析式.也考查了一次函数的性质.3、 (1)(-3,0);(0,4)(2)证明见解析(3)①∠QPO,∠BAQ;②线段OQ长的最小值为【解析】【分析】(1)根据题意令x=0,y=0求一次函数与坐标轴的交点;(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.(1)解:在y=x+4中,令y=0,得0=x+4,解得x=﹣3,∴A(﹣3,0),在y=x+4中,令x=0,得y=4,∴B(0,4);故答案为:(﹣3,0),(0,4).(2)证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,∵PB=PE,∴∠PBE=∠PEB=α,∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),∴∠BPE=2∠OAB.(3)解:①结论:∠QPO,∠BAQ理由:如图3中,∵∠APQ=∠BPE=2∠OAB,∵∠BPE=2∠OAB,∴∠APQ=∠BPE.∴∠APQ﹣∠APB=∠BPE﹣∠APB.∴∠QPO=∠EPA.又∵PE=PB,AP=PQ∴∠PEB=∠PBE=∠PAQ=∠AQP.∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.∴与∠EPA相等的角有∠QPO,∠BAQ.故答案为:∠QPO,∠BAQ.②如图3中,连接BQ交x轴于T.∵AP=PQ,PE=PB,∠APQ=∠BPE,∴∠APE=∠QPB,在△APE和△QPB中,,∴△APE≌△QPB(SAS),∴∠AEP=∠QBP,∵∠AEP=∠EBP,∴∠ABO=∠QBP,∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,∴∠BAO=∠BTO,∴BA=BT,∵BO⊥AT,∴OA=OT,∴直线BT的解析式为为:,∴点Q在直线y=﹣x+4上运动,∵B(0,4),T(3,0).∴BT=5.当OQ⊥BT时,OQ最小.∵S△BOT=×3×4=×5×OQ.∴OQ=.∴线段OQ长的最小值为.【点睛】本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.4、 (1)(2)或【解析】【分析】(1)根据待定系数法求一次函数解析式即可;(2)先求,根据求得,进而根据,进而将的纵坐标代入,即可求得的坐标.(1)直线与x轴交于点,与y轴相交于点,设直线的解析式为则解得直线的解析式为(2)与y轴交于点C,与x轴交于点D,令,则,即令,则,即,,将代入解得将代入解得或【点睛】本题考查了待定系数法求一次函数解析式,求两直线与坐标轴围成的三角形面积,根据一次函数解析式求得坐标轴的交点坐标是解题的关键.5、 (1)m=2,b=3(2)12(3)或【解析】【分析】(1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.(2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;(3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.(1)解:∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),将点B(2,4)代入直线得:,解得b=3;(2)将y=0代入,得:x=-6,∴A(-6,0),∴OA=6,∴△AOB的面积==12;(3)令x=n,则,,当C、D在点B左侧时,则,解得:;当C、D在点B右侧时,则,解得:;综上:n的取值范围为或.【点睛】本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共27页。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共29页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。
这是一份初中数学第二十一章 一次函数综合与测试练习,共26页。试卷主要包含了如图,一次函数y=kx+b等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)