![2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数专题训练试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12764907/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数专题训练试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12764907/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数专题训练试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12764907/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共25页。试卷主要包含了若点等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.A.1.5 B.2 C.2.5 D.32、当时,直线与直线的交点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、关于函数y=-2x+1,下列结论正确的是( )A.图像经过点 B.y随x的增大而增大C.图像不经过第四象限 D.图像与直线y=-2x平行4、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-5、下列各点中,不在一次函数的图象上的是( )A. B.C. D.6、点和点都在直线上,则与的大小关系为( )A. B. C. D.7、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定8、下列语句是真命题的是( ).A.内错角相等B.若,则C.直角三角形中,两锐角和的函数关系是一次函数D.在中,,那么为直角三角形9、某网店销售一款市场上畅销的护眼台灯,在销售过程中发现,这款护眼台灯销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.则y与x的函数关系式为( )A.y=﹣2x+100 B.y=﹣2x+40 C.y=﹣2x+220 D.y=﹣2x+6010、点和都在直线上,且,则与的关系是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 “”是一款数学应用软件,用“”绘制的函数和的图像如图所示.若,分别为方程和的一个解,则根据图像可知____.(填“”、“”或“”).2、在弹性限度内,弹簧的长度 y(厘米)是所挂物体质量 x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.请写出 y 与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.解:设y=kx+b(k≠0)由题意得:14.5=b,16=3k+b,解得:b=___,k=___.所以在弹性限度内,___,当x=4时,y=0.5×4+14.5=___(厘米).即物体的质量为4千克时,弹簧长度为16.5厘米.3、某手工作坊生产并销售某种食品,假设销售量与产量相等,如图中的线段AB、OC分别表示每天生产成本(单位:元)、收入(单位:元)与产量x(单位:千克)之间的函数关系.若该手工作坊某一天既不盈利也不亏损,则这天的产量是______千克.4、如图,一次函数y=2x和y=ax+5的图象交于点A(m,3),则不等式ax+5<2x的解集是 _____.5、函数y=-7x的图象在______象限内,从左向右______,y随x的增大而______.函数y=7x的图象在______象限内,从左向右______,y随x的增大而______.三、解答题(5小题,每小题10分,共计50分)1、已知一次函数的图象经过点和.(1)求此一次函数的表达式;(2)点是否在直线AB上,请说明理由.2、已知一次函数的图象与轴交于点,与轴交于点(1)求、两点的坐标;(2)画出函数的图象3、一次函数y=kx+b,当-3≤x≤1时,对应的y的取值为1≤y≤9,求该函数的解析式.4、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.(1)求k的值;(2)求四边形OCNB的面积;(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.5、如图,在平面角坐标系中,点B在y轴的负半轴上(0,﹣2),过原点的直线OC与直线AB交于C,∠COA=∠OCA=∠OBA=30°(1)点C坐标为 ,OC= ,△BOC的面积为 ,= ;(2)点C关于x轴的对称点C′的坐标为 ;(3)过O点作OE⊥OC交AB于E点,则△OAE的形状为 ,请说明理由;(4)在坐标平面内是否存在点F使△AOF和△AOB全等,若存在,请直接写出F坐标,请说明理由. -参考答案-一、单选题1、B【解析】【分析】根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.【详解】解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),设甲出发x小时后与乙相遇,根据题意得8+4(x﹣1)+4x=20,解得x=2.即甲出发2小时后与乙相遇.故选:B.【点睛】本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.2、B【解析】【分析】根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.【详解】解:一次函数中,,∴函数图象经过一二四象限∵在一次函数中,,∴直线经过一二三象限函数图象如图∴直线与的交点在第二象限故选:.【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.3、D【解析】【分析】根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;B、由于k=−2<0,则y随x增大而减小,故本选项错误;C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;故选:D.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.4、C【解析】略5、B【解析】【分析】根据一次函数解析变形可得,进而判断即可.【详解】解:∵∴A. ,,则在一次函数的图象上 ,不符合题意;B. ,,则不在一次函数的图象上,符合题意;C. ,,则在一次函数的图象上 ,不符合题意; D. ,,,则在一次函数的图象上 ,不符合题意;故选B【点睛】本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.6、B【解析】【分析】根据 ,可得 随 的增大而减小,即可求解.【详解】解:∵ ,∴ 随 的增大而减小,∵ ,∴ .故选:B【点睛】本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.7、A【解析】【分析】根据一次函数的性质得出y随x的增大而减小,进而求解.【详解】由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,∵-3<2,∴y1>y2,故选:A.【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.8、C【解析】【分析】根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.【详解】解:A、两直线平行,内错角相等,故原命题是假命题,不符合题意;B、若,则,故原命题是假命题,不符合题意;C、直角三角形中,两锐角和的函数关系是一次函数,故原命题是真命题,符合题意;D、在中,,那么最大角∠C=,故△ABC为锐三角形,故原命题是假命题,不符合题意;故选:C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.9、C【解析】【分析】根据单价为60元时,每星期卖出100个,每涨价1元,每星期少卖出2个,列出关系式即可.【详解】解:∵单价为60元时,每星期卖出100个.销售单价,每涨价1元,少卖出2个,∴设销售单价为x元,则涨价(x-60)元,每星期少卖出2(x-60)个.,∴y=100−2(x-60)=-2x+220,故选C.【点睛】此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.10、A【解析】【分析】根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.【详解】解:∵直线y=-x+m的图象y随着x的增大而减小,又∵x1≥x2,点A(x1,y1)和B(x2,y2)都在直线y=-x+m上,∴y1≤y2,故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.二、填空题1、<【解析】【分析】根据方程的解是函数图象交点的横坐标,结合图象得出结论.【详解】解:∵方程-x2(x-4)=-1的解为函数图象与直线y=-1的交点的横坐标,-x+4=-1的一个解为一次函数y=-x+4与直线y=-1交点的横坐标,如图所示:由图象可知:a<b.故答案为:<.【点睛】本题考查了函数图象与方程的解之间的关系,关键是利用数形结合,把方程的解转化为函数图象之间的关系.2、 14.5 0.5 16.5【解析】略3、30【解析】【分析】根据题意可设AB段的解析式为,OC段的解析式为,再结合图象利用待定系数法求出解析式,最后根据该手工作坊某一天既不盈利也不亏损时,即,可列出关于x的等式,解出x即可.【详解】根据题意可设AB段的解析式为:,且经过点A(0,240),B(60,480),∴ ,解得:,∴AB段的解析式为:;设OC段的解析式为:,且经过点C(60,720),∴,解得:,∴OC段的解析式为:.当该手工作坊某一天既不盈利也不亏损时,即,∴,解得:.所以这天的产量是30千克.故答案为:30.【点睛】本题考查一次函数的实际应用.掌握利用待定系数法求函数解析式是解答本题的关键.4、##【解析】【分析】把点A(m,3)代入y=2x求解的值,再利用的图象在的图象的上方可得答案.【详解】解: 一次函数y=2x和y=ax+5的图象交于点A(m,3), 不等式ax+5<2x的解集是 故答案为:【点睛】本题考查的是根据一次函数的交点坐标确定不等式的解集,理解一次函数的图象的性质是解本题的关键.5、 第二、四象限 下降 减少 第一、三象限 上升 增大【解析】略三、解答题1、 (1)一次函数的表达式为;(2)点在直线AB上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y=kx+b得到关于k、b的方程组,然后解方程求出k与b的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将和代入,得,解得,,∴一次函数的表达式为(2)解:点C在直线AB上,理由:当时,,∴点在直线AB上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.2、 (1),(2)见解析【解析】【分析】(1)分别令,即可求得点的坐标;(2)根据两点,作出一次函数的图象即可(1)令,则,即,令,则,即(2)过,作直线的图象,如图所示,【点睛】本题考查了一次函数与坐标轴的交点问题,画一次函数图象,掌握一次函数的性质是解题的关键.3、函数的解析式为y=2x+7或y=-2x+3【解析】【分析】分类讨论:由于一次函数是递增或递减函数,所以当一次函数y=kx+b为增函数时,则x=-3,y=1;x=1,y=9,当一次函数y=kx+b为减函数时,则x=-3,y=9;x=1,y=1,然后把它们分别代入y=kx+b中得到方程组,再解两个方程组即可.【详解】解:当x=-3,y=1;x=1,y=9,∴,解方程组得;当x=-3,y=9;x=1,y=1,∴,解方程组得,∴函数的解析式为y=2x+7或y=-2x+3.【点睛】本题考查了待定系数法求一次函数解析式:先设一次函数的解析式为y=kx+b,然后把一次函数图象上两点的坐标代入得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了分类讨论思想的运用.4、 (1)k=2;(2)7;(3)≤m≤3【解析】【分析】(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;(2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;(3)先求得点P的纵坐标,根据题意列不等式组求解即可.(1)解:令x=0,则y=2;∴B (0,2),∴OB=2,∵AB=;∴OA=1,∴A (-1,0),把B (-1,0)代入y=kx+2得:0=-k+2,∴k=2;(2)解:∵直线l2平行于直线y=−2x.∴设直线l2的解析式为y=−2x+b.把(2,2)代入得2=−22+b,解得:b=6,∴直线l2的解析式为.令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),由(1)得直线l1的解析式为.解方程组得:,∴N (1,4),四边形OCNB的面积=S△ODC- S△NBD==7;(3)解:∵点P的横坐标为m,∴点P的纵坐标为,∴PM=,∵PM≤3,且点P在线段CD上,∴≤3,且m≤3.解得:≤m≤3.【点睛】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.5、 (1)(3,),2,3,(2)(3,)(3)等边三角形,见解析(4)存在,(0,)或(0,﹣)或(2,)或(2,﹣).【解析】【分析】(1)先根据等角对等边,确定OB=OC=,再通过构造垂线法,分别求出相关线段的长,根据点所在象限,确定点的坐标;根据面积公式,选择适当的底边计算即可;利用同底的两个三角形面积之比等于对应高之比计算即可;(2)根据点关于x轴对称的特点,直接写出坐标即可;(3)根据三个角是60°的三角形是等边三角形判定即可;(4)利用全等三角形的判定定理,综合运用分类思想求解.(1)解:(1)∵点B(0,﹣2),∴OB=,∵∠COA=∠OCA=∠OBA=30°,∴OB=OC=,过点C作CD⊥x轴于点D, ∴CD==,DO==3,∵点C在第一象限;∴C(3,),∴=;∴,故答案为:(3,),2,3,.(2)∵C(3,),点C与点C'关于x轴对称,∴C'(3,﹣).故答案为:(3,﹣).(3)∵OE⊥OC,∴∠COE=90°,∵∠COA=30°,∴∠AOE=60°,∵∠OAE=60°,∴∠AOE=∠OAB=60°,∴△OAE是等边三角形,故答案为:等边三角形.(4)解:①如图1,当△AOB≌△AOF时,∵OB=,∴OF=,∴(0,),(0,﹣),②如图2,当△AOB≌OAF时,设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=x,令y=0,得x=2,∴点A的坐标为(2,0),∵△AOB≌OAF,∴OB=AF=,∴F3(2,),F4(2,﹣),综上所述,存在点F,且点F的坐标是(0,)或(0,﹣)或(2,)或(2,﹣).【点睛】本题考查了等角对等边,坐标与象限,勾股定理,点的对称,函数解析式,等边三角形的判定,三角形全等的判定,分类思想,熟练掌握待定系数法,灵活运用三角形全等的判定是解题的关键.
相关试卷
这是一份数学第二十一章 一次函数综合与测试达标测试,共30页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共35页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共27页。试卷主要包含了已知一次函数y=kx+b,如图,一次函数y=kx+b,已知一次函数y=,已知点,都在直线上,则,若实数等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)