![2021-2022学年冀教版八年级数学下册第二十一章一次函数定向训练试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12764914/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十一章一次函数定向训练试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12764914/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十一章一次函数定向训练试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12764914/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共30页。试卷主要包含了一次函数的图象一定经过等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、当时,直线与直线的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是( )
A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣1
3、下列不能表示是的函数的是( )
A.
0
5
10
15
3
3.5
4
4.5
B.
C.
D.
4、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).
A.快艇的速度比可疑船只的速度快0.3海里/分
B.5分钟时快艇和可疑船只的距离为3.5海里
C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶
D.当快艇出发分钟后追上可疑船只,此时离海岸海里
5、如图,一次函数y=f(x)的图像经过点(2,0),如果y>0,那么对应的x的取值范围是( )
A.x2 C.x0
6、无论m为何实数.直线与的交点不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、一次函数的图象一定经过( )
A.第一、二、三象限 B.第一、三、四象限
C.第二、三、四象限 D.第一、二、四象限
8、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
9、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
10、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )
A. B. C.3h D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.
2、如图,直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P,若点P(1,n),则方程组的解是_____.
3、当k>0时,直线y=kx经过第一、第三象限,从左向右______,即随着x的增大y也增大;当k<0时,直线y=kx经过第二、第四象限,从左向右______,即随着x的增大y反而减小.
4、点,是直线上的两点,则__.(填,或
5、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .
三、解答题(5小题,每小题10分,共计50分)
1、如图,平面直角坐标系xOy中,点A、B的坐标分别为A(a,0),B(0,b),其中a,b满足+b2﹣8b+16=0,点P在y轴上,且在B点上方,PB=m(m>0),以AP为边作等腰直角△APM,∠APM=90°,PM=PA,点M落在第一象限.
(1)a= ;b= ;
(2)求点M的坐标(用含m代数式表示);
(3)若射线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.
2、如图,在平面直角坐标系中,点,,,且,,满足关于,的二元一次方程,直线经过点,且直线轴,点为直线上的一个动点,连接,,.
(1)求,,的值;
(2)在点运动的过程中,当三角形的面积等于三角形的面积的时,求的值;
(3)在点运动的过程中,当取得最小值时,直接写出的值.
3、经开区某中学计划举行一次知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于乙种奖品的一半,应如何购买才能使总费用最少?并求出最少费用.
4、如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于点、,经过点的直线交轴于点.
(1)求点的坐标;
(2)动点在射线上运动,过点作轴,垂足为点,交直线于点,设点的横坐标为.线段的长为.求关于的函数解析式,并直接写出自变量的取值范围;
(3)在(2)的条件下,当点在线段上时,连接,若,在线段上取一点.连接,使,问在轴上是否存在点,使是以为直角的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
5、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
(1)则点A的坐标为_______,点B的坐标为______;
(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
②试求线段OQ长的最小值.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
【详解】
解:一次函数中,,
∴函数图象经过一二四象限
∵在一次函数中,,
∴直线经过一二三象限
函数图象如图
∴直线与的交点在第二象限
故选:.
【点睛】
本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
2、D
【解析】
【分析】
根据题意和一次函数的性质,可以解答本题.
【详解】
解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,
∴b=-1,k>0,
故选:D.
【点睛】
本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
3、B
【解析】
【分析】
根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
【详解】
解:A、根据图表进行分析为一次函数,设函数解析式为:,
将,,,
分别代入解析式为:
,
解得:,,
所以函数解析式为:,
∴y是x的函数;
B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
C、D选项从图象及解析式看可得y是x的函数.
故选:B.
【点睛】
题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
4、C
【解析】
【分析】
根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.
【详解】
解:快艇的速度为,可疑船只的速度为(海里/分),
∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;
5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;
由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;
设快艇出发t分钟后追上可疑船只,,解得t=,
这时离海岸海里,故D选项不符合题意;
故选:C.
【点睛】
此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.
5、A
【解析】
【分析】
y>0即是图象在x轴上方,找出这部分图象上点对应的横坐标范围即可.
【详解】
解:∵一次函数y=f(x)的图象经过点(2,0),
∴如果y>0,则x<2,
故选:A.
【点睛】
本题考查一次函数的图象,数形结合是解题的关键.
6、C
【解析】
【分析】
根据一次函数的图象与系数的关系即可得出结论.
【详解】
解:∵一次函数y=-x+4中,k=-10,
∴y随x的增大而增大,
∵x1>x2,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
10、A
【解析】
【分析】
根据图象得出,慢车的速度为 km/h,快车的速度为 km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.
【详解】
解:根据图象可知,慢车的速度为 km/h.
对于快车,由于往返速度大小不变,总共行驶时间是6h,
因此单程所花时间为3 h,故其速度为 km/h.
所以对于慢车,y与t的函数表达式为y=t (0≤t≤9)①.
对于快车,y与t的函数表达式为
y=,
联立①②,可解得交点横坐标为t=4.5,
联立①③,可解得交点横坐标为t=,
因此,两车先后两次相遇的间隔时间是,
故选:A.
【点睛】
本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.
二、填空题
1、
【解析】
【分析】
根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.
【详解】
∵直线与相交于点
∴的坐标既满足,也满足
∴是方程组的解
故答案为:
【点睛】
本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.
2、
【解析】
【分析】
由两条直线的交点坐标P(1,n),先求出n,再求出方程组的解即可.
【详解】
解:∵y=﹣x+4经过P(1,n),
∴n=-1+4=3,
∴n=3,
∴直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P(1,3),
∴,
故答案为.
【点睛】
本题考查了一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.
3、 上升 下降
【解析】
略
4、
【解析】
【分析】
根据正比例函数的增减性进行判断即可直接得出.
【详解】
解:,
y随着x的增大而减小,
,
.
故答案为:.
【点睛】
题目主要考查正比例函数的增减性质,理解题意,熟练掌握运用函数的增减性是解题关键.
5、 一次 任意实数
【解析】
略
三、解答题
1、 (1)4;4
(2)(m+4,m+8)
(3)不变,(﹣4,0)
【解析】
【分析】
(1)将进行变形,然后根据二次根式有意义的条件及平方的非负性质即可进行求解;
(2)过点M作轴于点N,利用同角的余角相等可得,根据全等三角形的判定和性质可得,,,结合图象即可得出结果;
(3)设直线MB的解析式为,由(2)结论将点M的坐标代入整理可得,根据题意可得:,将其代入可确定函数解析式,即可确定点Q的坐标.
(1)
,
则,
∵,,
∴,,
解得:,,
故答案为:4;4;
(2)
过点M作轴于点N,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,,
∴,
∴点M的坐标为;
(3)
点Q的坐标不变,
理由如下:设直线MB的解析式为,
则,
整理得,,
∵,
∴,
解得:,
∴直线MB的解析式为,
∴无论m的值如何变化,点Q的坐标都不变,为.
【点睛】
题目主要考查二次根式有意义的条件及平方的非负性质,全等三角形的判定和性质,利用待定系数法确定一次函数解析式等,理解题意,综合运用这些知识点是解题关键.
2、 (1),,
(2)或
(3)
【解析】
【分析】
(1)根据二次根式有意义的条件求出c,根据二元一次方程的定义列出方程组,解方程组求出a、b;
(2)根据三角形的面积公式求出△AOB的面积,根据S△ABD=×S△AOB求出S△ABD,根据三角形的面积公式计算,得到答案;
(3)利用待定系数法求出直线AB的解析式,进而求出m.
(1)
由和可知,,,
,
由二元一次方程的定义,得,
解得:,
,,;
(2)
设与直线交于,连接,
由(1)可知:,,,
,
,
,
,即,
解得:,
,
,
解得:或;
(3)
当取得最小值时,点在上,
设直线的解析式为:,
则,
解得:,
直线的解析式为:,
当时,,
的值为.
【点睛】
本题考查的是二次根式有意义的条件、二元一次方程的定义、三角形的面积计算、函数解析式的确定,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.
3、 (1)甲种奖品的单价为20元/件,乙种奖品的单价为10元/件;
(2)当学习购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【解析】
【分析】
(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,根据“购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w,由甲种奖品的数量不少于乙种奖品数量的一半,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于m的函数关系式,利用一次函数的性质即可解决最值问题.
(1)
设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,
依题意,得:,
解得,
答:甲种奖品的单价为20元/件,乙种奖品的单价为10元/件.
(2)
设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w元,
∵甲种奖品的数量不少于乙种奖品数量的一半,
∴m≥(60-m),
∴m≥20.
依题意,得:w=20m+10(60-m)=10m+600,
∵10>0,
∴w随m值的增大而增大,
∴当学校购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的一次函数关系式.
4、 (1)
(2)
(3)存在,,
【解析】
【分析】
(1)先由直线分别交轴、轴于点、,求出点、的坐标,再根据直线经过点,求出的值,得到直线的解析式,令,得到关于的一元一次方程,求出的值即为点的横坐标;
(2)由轴于点,交直线于点,且点的横坐标为,得,,再按点在轴的左侧及点在轴的右侧分别求出关于的函数解析式及相应的的取值范围即可;
(3)连接,设交轴于点,作轴于点,先证明,根据勾股定理及面积等式求出点的坐标,再证明,求出直线的解析式,令,得到关于的一元一次方程,解方程求出的值即为点的横坐标.
(1)
直线,当时,;
当时,则,
解得,
,,
直线经过点,
,
直线的解析式为,
当时,则,
解得,
(2)
轴于点,交直线于点,且点的横坐标为,
,,
如图1,点在轴的左侧,则,
∵PQ=-t+4-(2t+4)=-3t,
;
如图2,点在轴的右侧,则,
,
,
综上所述,关于的函数解析式为.
(3)
存在,
如图3,连接,交轴于点,,作轴于点,
点在线段上,且,
12×(-3t)(4-t)=152,
整理得或(不符合题意,舍去),
,,
点为的中点,
,
,
,
,
∵∠BPM+2∠ABO=90°,
,
,
,,,
∴OP=22+12=5,
,
,
,
∴(55OF)2+(5)2=OF2,
解得,
,
设直线的解析式为,则,
解得,
直线的解析式为,
由得,
,
设直线的解析式为,则,
解得,
直线的解析式为,
,
∴MR//OP,
设直线的解析式为,则,
解得,
直线的解析式为,
当时,则,
解得,
点的坐标为,.
【点睛】
此题重点考查一次函数的图象与性质、用待定系数法求函数解析式、用解方程组的方法求函数图象的交点坐标、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识与方法,综合运用以上知识是解题的关键.
5、 (1)(-3,0);(0,4)
(2)证明见解析
(3)①∠QPO,∠BAQ;②线段OQ长的最小值为
【解析】
【分析】
(1)根据题意令x=0,y=0求一次函数与坐标轴的交点;
(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;
(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.
(1)
解:在y=x+4中,令y=0,得0=x+4,
解得x=﹣3,
∴A(﹣3,0),
在y=x+4中,令x=0,得y=4,
∴B(0,4);
故答案为:(﹣3,0),(0,4).
(2)
证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,
∵PB=PE,
∴∠PBE=∠PEB=α,
∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),
∴∠BPE=2∠OAB.
(3)
解:①结论:∠QPO,∠BAQ
理由:如图3中,∵∠APQ=∠BPE=2∠OAB,
∵∠BPE=2∠OAB,
∴∠APQ=∠BPE.
∴∠APQ﹣∠APB=∠BPE﹣∠APB.
∴∠QPO=∠EPA.
又∵PE=PB,AP=PQ
∴∠PEB=∠PBE=∠PAQ=∠AQP.
∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.
∴与∠EPA相等的角有∠QPO,∠BAQ.
故答案为:∠QPO,∠BAQ.
②如图3中,连接BQ交x轴于T.
∵AP=PQ,PE=PB,∠APQ=∠BPE,
∴∠APE=∠QPB,
在△APE和△QPB中,,
∴△APE≌△QPB(SAS),
∴∠AEP=∠QBP,
∵∠AEP=∠EBP,
∴∠ABO=∠QBP,
∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,
∴∠BAO=∠BTO,
∴BA=BT,
∵BO⊥AT,
∴OA=OT,
∴直线BT的解析式为为:,
∴点Q在直线y=﹣x+4上运动,
∵B(0,4),T(3,0).
∴BT=5.
当OQ⊥BT时,OQ最小.
∵S△BOT=×3×4=×5×OQ.
∴OQ=.
∴线段OQ长的最小值为.
【点睛】
本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.
相关试卷
这是一份数学第二十一章 一次函数综合与测试达标测试,共30页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共26页。试卷主要包含了下列函数中,属于正比例函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共25页。试卷主要包含了已知P1,已知等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)