冀教版八年级下册第二十一章 一次函数综合与测试一课一练
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试一课一练,共24页。
八年级数学下册第二十一章一次函数专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把函数y=x的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )A.(2,2) B.(2,3) C.(2,4) D.(2,5)2、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )A. B. C. D.3、直线不经过点( )A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)4、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )A.①② B.①③ C.②④ D.①②④5、对于正比例函数y=kx,当x增大时,y随x的增大而增大,则k的取值范围( )A.k<0 B.k≤0 C.k>0 D.k≥06、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )A. B. C. D.7、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:x…﹣2﹣1012…y1…12345… x…﹣2﹣1012…y2…52﹣1﹣4﹣7…则关于x的不等式kx+b>mx+n的解集是( )A.x>0 B.x<0 C.x<﹣1 D.x>﹣18、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能9、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )A.第一象限 B.第二象限C.第三象限 D.第四象限10、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用待定系数法确定一次函数表达式所需要的步骤是什么?①设——设函数表达式y=___,②代——将点的坐标代入y=kx+b中,列出关于___、___的方程③求——解方程,求k、b④写——把求出的k、b值代回到表达式中即可.2、如图,直线y=kx+b交坐标轴于A,B两点,则关于x的不等式kx+b<0的解集是_____.3、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.4、如图,直线与的交点的横坐标为2,则不等式的自变量的取值范围是________.5、如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是________;当ax+b≤kx时,x的取值范围是____________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.(1)求k的值;(2)求四边形OCNB的面积;(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.2、如图,已知直线y=﹣x+3与x轴、y轴分别相交于点A、B,将△AOB沿直线CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度,并求出此时直线BC的表达式;(3)过点B作直线BP与x轴交于点P,且使OP=OA,求△ABP的面积.3、如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三顶点坐标:A1 ,B1 ,C1 ;(2)计算△ABC的面积;(3)若点P为x轴上一点,当PA+PB最小时,写出此时P点坐标 .4、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表: 普通板栗(件)精品板栗(件)总金额(元)甲购买情况23350乙购买情况41300(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?5、如图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:(1)求蜡烛在燃烧过程中高度与时间之间的函数表达式(2)经过多少小时蜡烛燃烧完毕? -参考答案-一、单选题1、C【解析】【分析】由函数“上加下减”的原则解题.【详解】解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,当x=2时,y=2+2=4,所以在平移后的函数图象上的是(2,4),故选:C.【点睛】本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.2、C【解析】【分析】根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.【详解】解:函数的图象与函数的图象互相平行,∴,∴,当时,,选项A不在直线上;当时,,选项B不在直线上;当时,,选项C在直线上;当时,,选项D不在直线上;故选:C.【点睛】题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.3、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A、当时,,即经过点,此项不符题意;B、当时,,即不经过点,此项符合题意;C、当时,,即经过点,此项不符题意;D、当时,,即经过点,此项不符题意;故选:B.【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.4、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由题意可得:甲步行的速度为(米分);由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,故①结论正确;∴乙步行的速度为米/分,故②结论正确;乙走完全程的时间(分),乙到达终点时,甲离终点距离是:(米),故③结论错误;设9分到23分钟这个时刻的函数关系式为,则把点代入得:,解得:,∴,设23分钟到30分钟这个时间的函数解析式为,把点代入得:,解得:,∴,把分别代入可得:或,故④错误;故正确的结论有①②.故选:A.【点睛】本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.5、C【解析】略6、D【解析】【分析】先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.【详解】解: 一次函数,其中y的值随x值的增大而减小, 当时,则 解得,故A不符合题意,当时,则 解得 故B不符合题意;当时,则 解得 故C不符合题意;当时,则 解得 故D符合题意;故选D【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.7、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.8、A【解析】【分析】由 可得一次函数的性质为随的增大而增大,从而可得答案.【详解】解:点和点是一次函数图象上的两点,, 随的增大而增大, 即一定为正数,故选A【点睛】本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.9、C【解析】【分析】通过一次函数中k和b的符号决定了直线经过的象限来解决问题.【详解】解:因为y=-x+4中,k=-1<0,b=4>0,∴直线y=-x+4经过第一、二、四象限,所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.故选:C.【点睛】本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.10、B【解析】【分析】根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.【详解】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴直线y=bx﹣k过一、二、三象限,∴选项B中图象符合题意.故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.二、填空题1、 kx+b k b【解析】略2、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.3、k<1【解析】【分析】利用一次函数图象与系数的关系列出关于m的不等式k-1<0,然后解不等式即可.【详解】解:∵一次函数y=(k-1)x+3中,y随x的增大而减小,∴k-1<0,解得k<1;故答案为:k<1.【点睛】本题主要考查一次函数图象与系数的关系.解答本题注意理解:k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.4、【解析】【分析】利用函数图象得出直线y=k1x+b1在直线y=k2x+b2上方和交点的x的取值范围,即得出结论.【详解】解:∵直线y1=k1x+b1在直线y2=k2x+b2在同一平面直角坐标系中的交点C的横坐标为2,∴x≥2时,直线y1=k1x+b1与直线y2=k2x+b2在上方交于同一点,故答案为x≥2.【点睛】本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.5、 x ≥-4【解析】【分析】根据图像可知,函数和交于点P(-4,-2),即可得二元一次方程组的解;根据函数图像可知,当时,.【详解】解:根据图像可知,函数和交于点P(-4,-2),则二元一次方程组的解是,由图像可知,当时,,故答案为:;.【点睛】本题考查了一次函数与二元一次方程组,解题的关键是掌握一次函数的性质.三、解答题1、 (1)k=2;(2)7;(3)≤m≤3【解析】【分析】(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;(2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;(3)先求得点P的纵坐标,根据题意列不等式组求解即可.(1)解:令x=0,则y=2;∴B (0,2),∴OB=2,∵AB=;∴OA=1,∴A (-1,0),把B (-1,0)代入y=kx+2得:0=-k+2,∴k=2;(2)解:∵直线l2平行于直线y=−2x.∴设直线l2的解析式为y=−2x+b.把(2,2)代入得2=−22+b,解得:b=6,∴直线l2的解析式为.令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),由(1)得直线l1的解析式为.解方程组得:,∴N (1,4),四边形OCNB的面积=S△ODC- S△NBD==7;(3)解:∵点P的横坐标为m,∴点P的纵坐标为,∴PM=,∵PM≤3,且点P在线段CD上,∴≤3,且m≤3.解得:≤m≤3.【点睛】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.2、 (1)(4,0),(0,3)(2),y=﹣x+3(3)3或9【解析】【分析】(1)令x=0和y=0即可求出点A,B的坐标;(2)连接BC,设OC=x,则AC=BC=4﹣x,在Rt△BOC中,利用勾股定理求出x,再利用待定系数法求出直线BC的解析式即可;(3)先求出点P的坐标,根据三角形的面积公式即可求解.(1)解:令y=0,则x=4;令x=0,则y=3,故点A的坐标为(4,0),点B的坐标为(0,3).故答案为:(4,0),(0,3);(2)解:如图所示,连接BC,设OC=x,∵直线CD垂直平分线段AB,∴AC=CB=4﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,32+x2=(4﹣x)2,解得,∴,∴C(,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x+3;(3)解:如图,∵点A的坐标为(4,0),∴OA=4,∵OP=OA,∴OP=2,∴点P的坐标为(2,0),P′(﹣2,0),∴AP=2,AP′=6,∴S△ABP=AP•OB=×2×3=3S△ABP′=AP′•OB=×6×3=9, 综上:△ABP的面积为3或9.【点睛】本题考查了一次函数,勾股定理,解题的关键是掌握一次函数的性质.3、 (1)(2)3.5(3)【解析】【分析】(1)依据轴对称的性质进行作图,即可得到△A1B1C1,进而得出△A1B1C1三顶点坐标;(2)依据割补法进行计算,即可得到△ABC的面积;(3)作点A关于x轴的对称点,连接B,交x轴于点P,依据一次函数的图象可得点P的坐标.(1)如图,△A1B1C1即为所求;其中A1,B1,C1的坐标分别为:故答案为:(2)△ABC的面积为:3×3-×3×1-×1×2-×2×3=3.5.(3)如图,作点A关于x轴的对称点,连接B,则B与x轴的交点即是点P的位置.设B的解析式为y=kx+b(k≠0),把和B(4,2)代入可得:,解得,∴y=x-2,令y=0,则x=2,∴P点坐标为,故答案为:.【点睛】本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.4、 (1)普通板栗的单价为55元,精品板栗的单价为80元;(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【解析】【分析】(1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;(2)加工普通板栗a件,则加工精品板栗件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.(1)解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:,解得,答:普通板栗的单价为55元,精品板栗的单价为80元;(2)解:加工普通板栗a件,则加工精品板栗件,由题意得:,∵,,∴当时,所获总利润w最多,,∴,答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【点睛】题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.5、 (1)y=-8x+15(0≤x≤)(2)小时【解析】【分析】(1)由图象可知一次函数过(0,15),(1,7)两点,可根据待定系数法列方程,求函数关系式.(2)将y=0的值代入,求x的解,即为蜡烛全部燃烧完所用的时间;(1)由图象可知过(0,15),(1,7)两点,设一次函数表达式为y=kx+b,∴,解得,∴此一次函数表达式为:y=-8x+15(0≤x≤).(2)令y=0∴-8x+15=0解得:x=,答:经过小时蜡烛燃烧完毕.【点睛】本题考查了用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了若一次函数,若实数,下列不能表示是的函数的是等内容,欢迎下载使用。
这是一份数学八年级下册第二十一章 一次函数综合与测试复习练习题,共23页。试卷主要包含了若一次函数,下列函数中,一次函数是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共25页。试卷主要包含了若一次函数的图像经过第一,已知P1等内容,欢迎下载使用。