冀教版八年级下册第二十一章 一次函数综合与测试课时作业
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课时作业,共31页。试卷主要包含了若直线y=kx+b经过一等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图1,在中,,点是的中点,动点从点出发沿运动到点,设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( ).
A.10 B.12 C. D.
2、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )
A.①② B.①③ C.②④ D.①②④
3、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
A.且 B.且
C.且 D.且
4、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
A. B. C. D.
5、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式( )
A.y=54x(x>2) B.y=54x+10(x>2)
C.y=54x-90(x>2) D.y=54x+100(x>2)
6、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )
A. B. C. D.
7、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.
A.1.5 B.2 C.2.5 D.3
8、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
x
…
﹣2
﹣1
0
1
2
…
y1
…
1
2
3
4
5
…
x
…
﹣2
﹣1
0
1
2
…
y2
…
5
2
﹣1
﹣4
﹣7
…
则关于x的不等式kx+b>mx+n的解集是( )
A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
9、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )
A. B.
C. D.
10、点和都在直线上,且,则与的关系是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点A(-2,4),点B(4,2),点P为x轴上一动点,当PA+PB的值最小时,此时点P的坐标为____________.
2、(1)如果是y关于x的正比例函数,则k=_________.
(2)若是关于x的正比例函数,m=_________.
(3)如果y=3x+k-4是y关于x的正比例函数,则k=_____.
3、如图,一次函数的图像与轴交于点,与正比例函数的图像交于点,点的横坐标为1.5,则满足的的范围是______.
4、如图,正比例函数 y=kx(k≠0)的图像经过点 A(2,4),AB⊥x 轴于点 B,将△ABO 绕点 A逆时针旋转 90°得到△ADC,则直线 AC 的函数表达式为_____.
5、甲、乙两车分别从,两地同时相向匀速行驶,当乙车到达地后,继续保持原速向远离的方向行驶,而甲车到达地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距地300千米的地(中途休息时间忽略不计).设两车行驶的时间为(小时),两车之间的距离为(千米),与之间的函数关系如图所示,则当甲车到达地时,乙车距地 __千米.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).
(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
2、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.
(1)分别求出这两个函数的解析式;
(2)点在轴上,且是等腰三角形,请直接写出点的坐标.
3、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求小龚出发36分钟时,离家的距离;
(2)求出AB段的图象的函数解析式;
(3)若小龚离目的地还有72千米,求小龚行驶了多少小时.
4、已知一次函数,完成下列问题:
(1)求此函数图像与x轴、y轴的交点坐标;
(2)画出此函数的图像:观察图像,当时,x的取值范围是______.
5、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.
(1)求钢笔和笔记本的单价;
(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w元,其中钢笔的支数为a.
①当时,求w与a之间的函数关系式;
②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?
-参考答案-
一、单选题
1、D
【解析】
【分析】
由图像可知, 当时,y与x的函关系为:y=x,当x=8时,y=8,即P与A重合时,的面积为8,据此求出CD,BC,再根据勾股定理求出AB即可P.
【详解】
解:如图2,当时,设y=kx,
将(3,3)代入得,k=1,
,
当P与A重合时,即:PC=AC=8,由图像可知,把x=8代入y=x,y=8,
,
,
,
是BC的中点,
在Rt中,
故选:D.
【点睛】
本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.
2、A
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由题意可得:甲步行的速度为(米分);
由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,
故①结论正确;
∴乙步行的速度为米/分,
故②结论正确;
乙走完全程的时间(分),
乙到达终点时,甲离终点距离是:(米),
故③结论错误;
设9分到23分钟这个时刻的函数关系式为,则把点代入得:
,解得:,
∴,
设23分钟到30分钟这个时间的函数解析式为,把点代入得:
,解得:,
∴,
把分别代入可得:或,
故④错误;
故正确的结论有①②.
故选:A.
【点睛】
本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.
3、D
【解析】
【分析】
根据一次函数图象与系数的关系解答即可.
【详解】
解:一次函数、是常数,的图象不经过第三象限,
且,
故选:D.
【点睛】
本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
4、B
【解析】
【分析】
根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
【详解】
解:∵直线y=kx+b经过一、二、四象限,
∴k<0,b>0,
∴﹣k>0,
∴直线y=bx﹣k过一、二、三象限,
∴选项B中图象符合题意.
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
5、B
【解析】
【分析】
由题意得,则销售价超过100元,超过的部分为,即可得.
【详解】
解:∵,
∴销售价超过100元,超过的部分为,
∴(且为整数),
故选B.
【点睛】
本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.
6、C
【解析】
【分析】
根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.
【详解】
解:函数的图象与函数的图象互相平行,
∴,
∴,
当时,,选项A不在直线上;
当时,,选项B不在直线上;
当时,y=6-3=3,选项C在直线上;
当时,,选项D不在直线上;
故选:C.
【点睛】
题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.
7、B
【解析】
【分析】
根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.
【详解】
解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),
设甲出发x小时后与乙相遇,
根据题意得8+4(x﹣1)+4x=20,
解得x=2.
即甲出发2小时后与乙相遇.
故选:B.
【点睛】
本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
8、D
【解析】
【分析】
根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
【详解】
解:根据表可得y1=kx+b中y随x的增大而增大;
y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
则当x>﹣1时,kx+b>mx+n.
故选:D.
【点睛】
本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
9、B
【解析】
【分析】
利用一次函数的性质逐项进行判断即可解答.
【详解】
解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;
C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
故选B.
【点睛】
本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.
10、A
【解析】
【分析】
根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.
【详解】
解:∵直线y=-x+m的图象y随着x的增大而减小,
又∵x1≥x2,点A(x1,y1)和B(x2,y2)都在直线y=-x+m上,
∴y1≤y2,
故选:A.
【点睛】
本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.
二、填空题
1、(2,0)
【解析】
【分析】
作点B关于x轴的对称点B',连接AB′交x轴于点P,则点P即为所求.此时,PA+PB的值最小,可得出B′(4,-2),利用待定系数法求出AB′的解析式,即可得点P的坐标.
【详解】
作点B关于x轴的对称点B',连接AB′交x轴于点P,则点P即为所求.此时,PA+PB的值最小,
∵点B(4,2).
∴B′(4,-2),
设直线AB′的解析式为y=kx+b,
∵点A(-2,4),点B′(4,-2).
∴,
解得:,
∴直线AB′的解析式为y=-x+2,
当y=0时,-x+2=0,解得:x=2,
∴点P的坐标(2,0);
【点睛】
本题主要考查最短路线问题;若两点在直线的同一旁,则需作其中一点关于这条直线的对称点.
2、 2 -2 4
【解析】
略
3、##1.5>x>-3
【解析】
【分析】
根据图象得出P点横坐标为1.5,联立y=kx-3和y=mx得m=k-2,再联立y=kx+6和y=(k-2)x解得x=-3,画草图观察函数图象得解集为.
【详解】
∵P是y=mx和y=kx-3的交点,点P的横坐标为1.5,
∴
解得m=k-2
联立y=mx和y=kx+6得
解得x=-3
即函数y=mx和y=kx+6交点P’的横坐标为-3,
观察函数图像得,
满足kx−3
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共27页。试卷主要包含了已知P1,若一次函数,若实数,如图,一次函数y=kx+b,已知正比例函数的图像经过点等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试达标测试,共27页。试卷主要包含了已知点,都在直线上,则等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题,共33页。