冀教版八年级下册第二十一章 一次函数综合与测试同步测试题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步测试题,共29页。试卷主要包含了下列不能表示是的函数的是,一次函数的图象不经过的象限是,点A等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知正比例函数的图像经过点(2,4)、(1,)、(1,),那么与的大小关系是( )
A. B. C. D.无法确定
2、下列函数中,y是x的一次函数的是( )
A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
3、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )
A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
4、如图,一次函数y=f(x)的图像经过点(2,0),如果y>0,那么对应的x的取值范围是( )
A.x2 C.x0
5、下列不能表示是的函数的是( )
A.
0
5
10
15
3
3.5
4
4.5
B.
C.
D.
6、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )
A. B.
C. D.
7、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是( )
A.两人出发1小时后相遇
B.王明跑步的速度为8km/h
C.陈启浩到达目的地时两人相距10km
D.陈启浩比王明提前1.5h到目的地
8、一次函数的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
A. B. C. D.不能确定
10、点和都在直线上,且,则与的关系是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、观察图象可知:
当k>0时,直线y=kx+b从左向右______;
当k<0时,直线y=kx+b从左向右______.
由此可知,一次函数y=kx+b(k,b是常数,k≠0) 具有如下性质:
当k>0时,y随x的增大而______;当k<0时,y随x的增大而______.
2、像y=x+1,s=-3t+1这些函数解析式都是常数k与自变量的______与常数b的______的形式.
一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做______函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
3、将直线向上平移1个单位后的直线的表达式为______.
4、直线y=2x-4的图象是由直线y=2x向______平移______个单位得到.
5、已知直线y=kx+b(k≠0)的图像与直线y=-2x平行,且经过点(2,3),则该直线的函数表达式为______________________.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为 ;
(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.
2、已知y与x﹣2成正比例,且当x=1时,y=﹣2
(1)求变量y与x的函数关系式;
(2)请在给出的平面直角坐标系中画出此函数的图象;
(3)已知点A在函数y=ax+b的图象上,请直接写出关于x的不等式ax+b>2x﹣4的解集 .
3、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送168箱小鸡到A,B两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往A、B两村的运费如下表:
目的地车型
A村(元/辆)
B村(元/辆)
大货车
80
90
小货车
40
60
(1)试求这18辆车中大、小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往4村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式,并直接写出自变量取值范围;
(3)在(2)的条件下,若运往A村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
4、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)直接写出A型桌椅每套 元,B型桌椅每套 元;
(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.
①求y与x之间的函数关系,并直接写出x的取值范围;
②求出总费用最少的购置方案.
5、如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)(3,4).
(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三顶点坐标:A1 ,B1 ,C1 ;
(2)计算△ABC的面积;
(3)若点P为x轴上一点,当PA+PB最小时,写出此时P点坐标 .
-参考答案-
一、单选题
1、A
【解析】
【分析】
先求出正比例函数解析式根据正比例函数的图象性质,当k<0时,函数随x的增大而减小,可得y1与y2的大小.
【详解】
解:∵正比例函数的图像经过点(2,4)、代入解析式得
解得
∴正比例函数为
∵<0,
∴y随x的增大而减小,
由于-1<1,故y1
相关试卷
这是一份数学八年级下册第二十一章 一次函数综合与测试复习练习题,共23页。试卷主要包含了若一次函数,下列函数中,一次函数是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共28页。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共35页。试卷主要包含了下列函数中,属于正比例函数的是,一次函数的图象不经过的象限是,一次函数y=mx﹣n等内容,欢迎下载使用。