搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年冀教版八年级数学下册第二十一章一次函数定向练习试卷(精选含详解)

    2021-2022学年冀教版八年级数学下册第二十一章一次函数定向练习试卷(精选含详解)第1页
    2021-2022学年冀教版八年级数学下册第二十一章一次函数定向练习试卷(精选含详解)第2页
    2021-2022学年冀教版八年级数学下册第二十一章一次函数定向练习试卷(精选含详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第二十一章 一次函数综合与测试习题

    展开

    这是一份2021学年第二十一章 一次函数综合与测试习题,共29页。试卷主要包含了已知一次函数y=kx+b,已知正比例函数的图像经过点等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数定向练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
    A.-3 B.-1 C.2 D.4
    2、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )

    A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
    C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
    3、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )
    A.小于0 B.等于0 C.大于0 D.非负数
    4、如图,一次函数y=f(x)的图像经过点(2,0),如果y>0,那么对应的x的取值范围是( )

    A.x2 C.x0
    5、下列语句是真命题的是( ).A.内错角相等
    B.若,则
    C.直角三角形中,两锐角和的函数关系是一次函数
    D.在中,,那么为直角三角形
    6、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是(  )
    A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣1
    7、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )

    A.(2,2) B.(,) C.(,) D.(,)
    8、如图,直线y=kx+b与x轴的交点的坐标是(﹣3,0),那么关于x的不等式kx+b>0的解集是(  )

    A.x>﹣3 B.x<﹣3 C.x>0 D.x<0
    9、已知正比例函数的图像经过点(2,4)、(1,)、(1,),那么与的大小关系是( )
    A. B. C. D.无法确定
    10、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
    A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在直角坐标系中,等腰直角三角形、、、、按如图所示的方式放置,其中点、、、、均在一次函数的图象上,点、、、、均在轴上.若点的坐标为,点的坐标为,则点的坐标为___.

    2、如图,一次函数x+4的图像与x轴交于点A,与y轴交于点B,C是x轴上的一动点,连接BC,将沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为_____.

    3、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.
    4、如图,直线y=-x+2与y=kx+b(k≠0且k,b为常数)的交点坐标为(3,-1),则关于x的不等式kx+b≥-x+2的解集为 ___.

    5、将一次函数向上平移5个单位长度后得到直线AB,则平移后直线AB对应的函数表达式为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知一次函数在轴上的截距为2,且随的增大而减小,求一次函数的解析式,并求出它的图像与坐标轴围成的三角形的面积
    2、已知 A、B 两地相距 3km,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km)与他行驶所用的时间 x(min)之间的关系.根据图像解答下列问题:

    (1)甲骑车的速度是 km/min;
    (2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y 乙(km)与所用时间 x(min)的关系的大致图像;
    (3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.
    3、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.

    (1)则点A的坐标为_______,点B的坐标为______;
    (2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
    (3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
    ①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
    ②试求线段OQ长的最小值.
    4、如图,在平面直角坐标系中,点,,,且,,满足关于,的二元一次方程,直线经过点,且直线轴,点为直线上的一个动点,连接,,.

    (1)求,,的值;
    (2)在点运动的过程中,当三角形的面积等于三角形的面积的时,求的值;
    (3)在点运动的过程中,当取得最小值时,直接写出的值.
    5、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.

    (1)求小龚出发36分钟时,离家的距离;
    (2)求出AB段的图象的函数解析式;
    (3)若小龚离目的地还有72千米,求小龚行驶了多少小时.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
    【详解】
    解:根据题意,
    ∵y1>y2,
    ∴,
    解得:,
    ∴,
    ∴;,
    ∵当x<1时,y1>y2,

    ∴,
    ∴;
    ∴k的值可以是-1;
    故选:B.
    【点睛】
    本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
    2、B
    【解析】
    【分析】
    根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
    【详解】
    解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
    (5x+5×x)÷5=x(m/min),
    ∵公司位于家正西方500米,
    ∴(−10−2)×x=500+(5+2.5)x,
    解得x=200,
    ∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
    爸爸到达公司时,丁丁距离商店路程为:
    3500-(−12)×(300+200)=m.
    综上,正确的选项为B.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
    3、C
    【解析】
    【分析】
    一次函数过第一、二、三象限,则,根据图象结合性质可得答案.
    【详解】
    解:如图,函数的图象经过第一、二、三象限,

    则函数的图象与轴交于正半轴,

    故选C
    【点睛】
    本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.
    4、A
    【解析】
    【分析】
    y>0即是图象在x轴上方,找出这部分图象上点对应的横坐标范围即可.
    【详解】
    解:∵一次函数y=f(x)的图象经过点(2,0),
    ∴如果y>0,则x<2,
    故选:A.
    【点睛】
    本题考查一次函数的图象,数形结合是解题的关键.
    5、C
    【解析】
    【分析】
    根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.
    【详解】
    解:A、两直线平行,内错角相等,故原命题是假命题,不符合题意;
    B、若,则,故原命题是假命题,不符合题意;
    C、直角三角形中,两锐角和的函数关系是一次函数,故原命题是真命题,符合题意;
    D、在中,,那么最大角∠C=,故△ABC为锐三角形,故原命题是假命题,不符合题意;
    故选:C.
    【点睛】
    本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.
    6、D
    【解析】
    【分析】
    根据题意和一次函数的性质,可以解答本题.
    【详解】
    解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,
    ∴b=-1,k>0,
    故选:D.
    【点睛】
    本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    7、C
    【解析】
    【分析】
    先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
    【详解】
    ∵∠OBA=90°,A(4,4),且,点D为OB的中点,
    ∴点D(2,0),AC=1,BC=3,点C(4,3),
    设直线AO的解析式为y=kx,
    ∴4=4k,
    解得k=1,
    ∴直线AO的解析式为y=x,
    过点D作DE⊥AO,交y轴于点E,交AO于点F,
    ∵∠OBA=90°,A(4,4),
    ∴∠AOE=∠AOB=45°,
    ∴∠OED=∠ODE=45°,OE=OD,
    ∴DF=FE,
    ∴点E是点D关于直线AO的对称点,
    ∴点E(0,2),
    连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
    设CE的解析式为y=mx+n,

    ∴,
    解得,
    ∴直线CE的解析式为y=x+2,
    ∴y=14x+2y=x,
    解得,
    ∴使四边形PDBC周长最小的点P的坐标为(,),
    故选C.
    【点睛】
    本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
    8、A
    【解析】
    【分析】
    根据图象直接解答即可.
    【详解】
    ∵直线y=kx+b与x轴交点坐标为(﹣3,0),
    ∴由图象可知,当x>﹣3时,y>0,
    ∴不等式kx+b>0的解集是x>﹣3.
    故选:A.
    【点睛】
    此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.
    9、A
    【解析】
    【分析】
    先求出正比例函数解析式根据正比例函数的图象性质,当k<0时,函数随x的增大而减小,可得y1与y2的大小.
    【详解】
    解:∵正比例函数的图像经过点(2,4)、代入解析式得
    解得
    ∴正比例函数为
    ∵<0,
    ∴y随x的增大而减小,
    由于-1<1,故y10,
    ∴y随x的增大而增大,
    ∵x1>x2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点Bn-1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值,从而得到点An的坐标.
    【详解】
    解:如图,点的坐标为,点的坐标为,
    ,,则.
    △是等腰直角三角形,,

    点的坐标是.
    同理,在等腰直角△中,,,则.
    点、均在一次函数的图象上,
    ,解得,,
    该直线方程是.
    点,的横坐标相同,都是3,
    当时,,即,则,

    同理,,

    ,,
    当时,,
    即点的坐标为,.
    故答案为,.

    【点睛】
    本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点Bn的坐标的规律.
    2、(12,0)或(-,0)
    【解析】
    【分析】
    由一次函数解析式求出点A、B的坐标,进而求得OA、OB、AB,分点C在x轴正半轴和在x轴负半轴,利用折叠性质和勾股定理求解OC即可.
    【详解】
    解:当x=0时,y=4,当y=0时,x=-3,
    ∴A(-3,0),B(0,4),
    ∴OA=3,OB=4,
    ∴,
    设点A的对应点为A1,OC=x,
    当点C在x轴正半轴时,如图,
    根据轴对称性质得:BA1=AB=5,OA1=5+4=9,CA1=AC=3+x,
    在Rt△A1OC中,由勾股定理得:,
    解得:x=12,即OC=12,
    ∴点C坐标为(12,0);

    当点C在x轴负半轴时,如图,
    根据折叠性质得:BA1=AB=5,OA1=5-4=1,CA1=AC=3-x,
    在Rt△A1OC中,由勾股定理得:,
    解得:,即OC= ,
    ∴点C的坐标为(-,0),

    综上,点C的坐标为(12,0)或(-,0),
    故答案为:(12,0)或(-,0).
    【点睛】
    本题考查一次函数与坐标轴的交点问题、折叠性质、勾股定理、坐标与图形,熟练掌握轴对称性质,利用分类讨论思想解决问题是解答的关键.
    3、2(满足k>0即可)
    【解析】
    【分析】
    根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.
    【详解】
    解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,
    ∴k>0.
    故答案为:2(满足k>0即可).
    【点睛】
    本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.
    4、
    【解析】
    【分析】
    根据题意结合函数图象,可得当时,的图象对应的点在函数(且k,b为常数)的图象下面,据此即可得出不等式的解集.
    【详解】
    解:从图象得到,当时,的图象对应的点在函数(且k,b为常数)的图象下面,
    ∴不等式的解集为,
    故答案为:.
    【点睛】
    本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,解决此类问题的关键是仔细观察图形,注意几个关键点,做到数形结合.
    5、y=x+7
    【解析】
    【分析】
    直接根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,把直线y=x+2向上平移5个单位长度后所得直线的解析式为:y=x+2+5,即y=x+7.
    ∴直线AB对应的函数表达式为y=x+7.
    故答案为:y=x+7.
    【点睛】
    本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
    三、解答题
    1、y=-2x+2;1
    【解析】
    【分析】
    根据截距为2,且y随x的增大而减小即可确定k值,求出解析式即可求出面积.
    【详解】
    解:∵一次函数y=kx+k2-2在y轴上的截距为2,
    ∴|k2-2|=2,
    即k=±2或k'=0,
    又∵y随x的增大而减小,
    ∴k<0,
    即k=-2,
    ∴一次函数解析式为y=-2x+2;
    作出函数图象如图,

    设坐标轴原点为O,函数图象与x轴交于点B,与y轴交于点A,
    由解析式可知A(0,2),B(1,0),
    ∴OA=2,OB=1,
    ∴S△AOB=OA•OB=×2×1=1.
    【点睛】
    本题主要考查一次函数的知识,熟练掌握一次函数基本知识是解题的关键.
    2、 (1)0.5
    (2)见解析
    (3)(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km
    【解析】
    【分析】
    (1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;
    (2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;
    (3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.
    (1)
    解:甲骑车6min行驶了3km,
    ∴甲骑车的速度是3÷6=0.5(km/min),
    故答案为:0.5;
    (2)
    解:设乙的速度为x km/min,由题意得
    0.5×4-4x=1.2,
    ∴x=0.2,
    又A、B两地相距3km,A、C两地相距1.2km,
    ∴B、C两地相距1.8km,
    ∴乙出发后1.8÷0.2=9(min)到达B地,
    在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:

    (3)
    解:由(1)(2)可知,y甲=0.5x,y乙=1.8-0.2x,
    由0.5x=1.8-0.2x得x=,
    当x=时,y甲=y乙=,
    ∴两个函数图象的交点坐标为(,),
    它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.
    【点睛】
    本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.
    3、 (1)(-3,0);(0,4)
    (2)证明见解析
    (3)①∠QPO,∠BAQ;②线段OQ长的最小值为
    【解析】
    【分析】
    (1)根据题意令x=0,y=0求一次函数与坐标轴的交点;
    (2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;
    (3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.
    (1)
    解:在y=x+4中,令y=0,得0=x+4,
    解得x=﹣3,
    ∴A(﹣3,0),
    在y=x+4中,令x=0,得y=4,
    ∴B(0,4);
    故答案为:(﹣3,0),(0,4).
    (2)
    证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,
    ∵PB=PE,
    ∴∠PBE=∠PEB=α,
    ∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),
    ∴∠BPE=2∠OAB.
    (3)
    解:①结论:∠QPO,∠BAQ
    理由:如图3中,∵∠APQ=∠BPE=2∠OAB,
    ∵∠BPE=2∠OAB,
    ∴∠APQ=∠BPE.
    ∴∠APQ﹣∠APB=∠BPE﹣∠APB.
    ∴∠QPO=∠EPA.
    又∵PE=PB,AP=PQ
    ∴∠PEB=∠PBE=∠PAQ=∠AQP.
    ∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.
    ∴与∠EPA相等的角有∠QPO,∠BAQ.
    故答案为:∠QPO,∠BAQ.
    ②如图3中,连接BQ交x轴于T.

    ∵AP=PQ,PE=PB,∠APQ=∠BPE,
    ∴∠APE=∠QPB,
    在△APE和△QPB中,,
    ∴△APE≌△QPB(SAS),
    ∴∠AEP=∠QBP,
    ∵∠AEP=∠EBP,
    ∴∠ABO=∠QBP,
    ∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,
    ∴∠BAO=∠BTO,
    ∴BA=BT,
    ∵BO⊥AT,
    ∴OA=OT,
    ∴直线BT的解析式为为:,
    ∴点Q在直线y=﹣x+4上运动,
    ∵B(0,4),T(3,0).
    ∴BT=5.
    当OQ⊥BT时,OQ最小.
    ∵S△BOT=×3×4=×5×OQ.
    ∴OQ=.
    ∴线段OQ长的最小值为.
    【点睛】
    本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.
    4、 (1),,
    (2)或
    (3)
    【解析】
    【分析】
    (1)根据二次根式有意义的条件求出c,根据二元一次方程的定义列出方程组,解方程组求出a、b;
    (2)根据三角形的面积公式求出△AOB的面积,根据S△ABD=×S△AOB求出S△ABD,根据三角形的面积公式计算,得到答案;
    (3)利用待定系数法求出直线AB的解析式,进而求出m.
    (1)
    由和可知,,,

    由二元一次方程的定义,得,
    解得:,
    ,,;
    (2)
    设与直线交于,连接,

    由(1)可知:,,,



    ,即,
    解得:,


    解得:或;
    (3)
    当取得最小值时,点在上,
    设直线的解析式为:,
    则,
    解得:,
    直线的解析式为:,
    当时,,
    的值为.
    【点睛】
    本题考查的是二次根式有意义的条件、二元一次方程的定义、三角形的面积计算、函数解析式的确定,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.
    5、 (1)36千米
    (2)y=90x-24 (0.8≤x≤2)
    (3)1.2小时
    【解析】
    【分析】
    (1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;
    (2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;
    (3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.
    (1)
    在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);
    (2)
    由图象知: ,
    设AB段的函数解析式为:
    把A、B两点的坐标分别代入上式得:
    解得:
    ∴AB段的函数解析式为(0.8≤x≤2)
    (3)
    由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)
    所以在中,当y=84时,即,得
    即小龚离目的地还有72千米,小龚行驶了1.2小时.
    【点睛】
    本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.

    相关试卷

    2021学年第二十一章 一次函数综合与测试课时作业:

    这是一份2021学年第二十一章 一次函数综合与测试课时作业,共32页。试卷主要包含了下列函数中,一次函数是等内容,欢迎下载使用。

    数学八年级下册第二十一章 一次函数综合与测试课后复习题:

    这是一份数学八年级下册第二十一章 一次函数综合与测试课后复习题,共25页。试卷主要包含了点A,若实数等内容,欢迎下载使用。

    数学第二十一章 一次函数综合与测试随堂练习题:

    这是一份数学第二十一章 一次函数综合与测试随堂练习题,共24页。试卷主要包含了如图所示,直线分别与轴,已知点,都在直线上,则等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map