冀教版八年级下册第二十一章 一次函数综合与测试课时训练
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课时训练,共27页。试卷主要包含了已知点等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、当时,直线与直线的交点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、点和点都在直线上,则与的大小关系为( )A. B. C. D.3、无论m为何实数.直线与的交点不可能在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )A. B.C. D.5、如图,函数和的图像相交于点P(1,m),则不等式的解集为( )A. B. C. D.6、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1,y2的大小关系是( )A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定7、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )A. B. C. D.8、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离(单位:)和两车行驶时间(单位:)之间的关系如图所示.下列说法错误的是( ).A.两车出发时相遇 B.甲、乙两地之间的距离是C.货车的速度是 D.时,两车之间的距离是9、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )A.-3 B.-1 C.2 D.410、已知P1(﹣3,y1)、P2(2,y2)是y=﹣2x+1的图象上的两个点,则y1、y2的大小关系是( )A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用待定系数法确定一次函数表达式所需要的步骤是什么?①设——设函数表达式y=___,②代——将点的坐标代入y=kx+b中,列出关于___、___的方程③求——解方程,求k、b④写——把求出的k、b值代回到表达式中即可.2、如图,一次函数x+4的图像与x轴交于点A,与y轴交于点B,C是x轴上的一动点,连接BC,将沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为_____.3、直线y=2x-4的图象是由直线y=2x向______平移______个单位得到.4、如果点P1(3,y1),P2(2,y2)在一次函数y=8x-1的图像上,那么y1______y2.(填“>”、“<”或“=”)5、已知点 P(a,b)在一次函数 y=3x-1 的图像上,则 3a-b+1=_________.三、解答题(5小题,每小题10分,共计50分)1、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.(1)若,请写出与的函数关系式.(2)若,请写出与的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?2、如图,在平面直角坐标系中,直线与直线相交于点.(1)求m,b的值;(2)求的面积;(3)点P是x轴上的一点,过P作垂于x轴的直线与的交点分别为C,D,若P点的横坐标为n,当时直接写出n的取值范围.3、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:A种产品B种产品成本价(元/件)400300销售价(元/件)560450(1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?4、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为 ;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.5、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点(1)若此一次函数图象经过平行四边形边的中点,求的值(2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围 -参考答案-一、单选题1、B【解析】【分析】根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.【详解】解:一次函数中,,∴函数图象经过一二四象限∵在一次函数中,,∴直线经过一二三象限函数图象如图∴直线与的交点在第二象限故选:.【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.2、B【解析】【分析】根据 ,可得 随 的增大而减小,即可求解.【详解】解:∵ ,∴ 随 的增大而减小,∵ ,∴ .故选:B【点睛】本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.3、C【解析】【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=-x+4中,k=-1<0,b=4>0,∴函数图象经过一二四象限,∴无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选:C.【点睛】本题考查的是两条直线相交或平行问题,熟知一次函数的图象与系数的关系是解答此题的关键.4、D【解析】【分析】根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.【详解】A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;故选:D.【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.5、B【解析】【分析】由题意首先确定y=mx和y=kx-b的交点以及作出y=kx-b的大体图象,进而根据图象进行判断即可.【详解】解:∵y=kx+b的图象经过点P(1,m),∴k+b=m,当x=-1时,kx-b=-k-b=-(k+b)=-m,即(-1,-m)在函数y=kx-b的图象上.又∵(-1,-m)在y=mx的图象上.∴y=kx-b与y=mx相交于点(-1,-m).则函数图象如图.则不等式-b≤kx-b≤mx的解集为-1≤x≤0.故选:B.【点睛】本题考查一次函数与不等式的关系,运用数形结合思维分析并正确确定y=kx-b和y=mx的交点是解题的关键.6、A【解析】【分析】根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:∵一次函数y=3x+a的一次项系数为3>0,∴y随x的增大而增大,∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,∴y1<y2,故选:A.【点睛】本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键.7、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);即,,;以点为圆心、长为半径画弧,与轴正半轴交于点,故,则,点C的坐标为;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.8、D【解析】【分析】根据函数图象分析,当时,函数图象有交点,即可判断A选项;根据最大距离为360即可判断B选项,根据A选项可得两车的速度进而判断C,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D选项.【详解】解:根据函数图象可知,当时,,总路程为360km,所以,轿车的速度为,货车的速度为:故A,B,C正确时,轿车的路程为,货车的路程为,则两车的距离为故D选项不正确故选D【点睛】本题考查了一次函数的应用,从图象上获取信息是解题的关键.9、B【解析】【分析】先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.【详解】解:根据题意,∵y1>y2,∴,解得:,∴,∴;,∵当x<1时,y1>y2,∴∴,∴;∴k的值可以是-1;故选:B.【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.10、A【解析】【分析】分别把P1(-3,y1)、P2(2,y2)代入y=-2x+1,求出y1、y2的值,并比较出其大小即可.【详解】解:∵P1(-3,y1)、P2(2,y2)是y=-2x+1的图象上的两个点,∴y1=6+1=7,y2=-4+1=-3,∵7>-3,∴y1>y2.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题1、 kx+b k b【解析】略2、(12,0)或(-,0)【解析】【分析】由一次函数解析式求出点A、B的坐标,进而求得OA、OB、AB,分点C在x轴正半轴和在x轴负半轴,利用折叠性质和勾股定理求解OC即可.【详解】解:当x=0时,y=4,当y=0时,x=-3,∴A(-3,0),B(0,4),∴OA=3,OB=4,∴,设点A的对应点为A1,OC=x,当点C在x轴正半轴时,如图,根据轴对称性质得:BA1=AB=5,OA1=5+4=9,CA1=AC=3+x,在Rt△A1OC中,由勾股定理得:,解得:x=12,即OC=12,∴点C坐标为(12,0);当点C在x轴负半轴时,如图,根据折叠性质得:BA1=AB=5,OA1=5-4=1,CA1=AC=3-x,在Rt△A1OC中,由勾股定理得:,解得:,即OC= ,∴点C的坐标为(-,0),综上,点C的坐标为(12,0)或(-,0),故答案为:(12,0)或(-,0).【点睛】本题考查一次函数与坐标轴的交点问题、折叠性质、勾股定理、坐标与图形,熟练掌握轴对称性质,利用分类讨论思想解决问题是解答的关键.3、 下 4【解析】略4、【解析】【分析】先求出y1,y2的值,再比较出其大小即可.【详解】解:∵点P1(3,y1)、P2(2,y2)在一次函数y=8x-1的图象上,∴y1=8×3-1=23,y2=8×2-1=15,∵23>15,∴y1>y2.故答案为:>.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5、2【解析】【分析】由点P在一次函数图象上,利用一次函数图象上点的坐标特征可得出b=3a-1,再将其代入(3a-b+1)中即可求出结论.【详解】解:∵点P(a,b)在一次函数y=3x-1的图象上,∴b=3a-1,∴3a-b+1=3a-(3a-1)+1=2.故答案为:2.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.三、解答题1、 (1)(2)(3)13吨【解析】【分析】(1)当0<x≤8时,根据水费=用水量×1.5,即可求出y与x的函数关系式;(2)当x>8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y与x的函数关系式;(3)当0<x≤8时,y≤12,由此可知这个月该户用水量超过8吨,将y=23代入(2)中所求的关系式,求出x的值即可.(1)根据题意可知:当时,;(2)根据题意可知:当时,;(3)当时,,的最大值为(元,,该户当月用水超过8吨.令中,则,解得:.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.2、 (1)m=2,b=3(2)12(3)或【解析】【分析】(1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.(2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;(3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.(1)解:∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),将点B(2,4)代入直线得:,解得b=3;(2)将y=0代入,得:x=-6,∴A(-6,0),∴OA=6,∴△AOB的面积==12;(3)令x=n,则,,当C、D在点B左侧时,则,解得:;当C、D在点B右侧时,则,解得:;综上:n的取值范围为或.【点睛】本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.3、 (1)A种产品生产400件,B种产品生产200件(2)A种产品生产1000件时,利润最大为460000元【解析】【分析】(1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;(2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.(1)解:设A种产品生产x件,则B种产品生产(600-x)件,由题意得:,解得:x=400,600-x=200,答:A种产品生产400件,B种产品生产200件.(2)解:设A种产品生产x件,总利润为w元,由题意得:由,得:,因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.【点睛】本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.4、 (1)(,3)或(4,3)(2)45°(3)y=-x+【解析】【分析】(1)是直角三角形,分两种情况:①,,轴,进而得出点坐标;②,,如图过点Q作,垂足为C,在中,由勾股定理知,设,在中,由勾股定理知,在中,由勾股定理知,有,求解x的值,即的长,进而得出点坐标;(2)如图,点P翻折后落在线段AB上的点E处,由翻折性质和可得,,,,点E是AB的中点,过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H, 可证,求出EF的值,的值,有,用证明,知,,进而可求的值;(3)如图,由旋转的性质可知,,证,可知,,过点A作AG⊥BQ于G,设,则,在中,,由勾股定理得,解得的值,进而求出点的坐标,设过点的直线解析式为,将两点坐标代入求解即可求得解析式.(1)解:∵是直角三角形,点,点∴①当时,∵轴∴点坐标为;②当时,,如图过点Q作,垂足为C在中,由勾股定理知设,在中,由勾股定理知在中,由勾股定理知∴解得∴∴∴点坐标为;综上所述,点坐标为或.(2)解:如图,点P翻折后落在线段AB上的点E处,则又∵∴∴∴∴∴点E是AB的中点过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H, 在和中∵∴∴∴EF= ∵ ∴在和中∵∴∴∴∴.(3)解:如图由旋转的性质可知∵∴在和中∴∴∴过点A作AG⊥BQ于G设∴在中,,由勾股定理得解得∴∴点的坐标分别为设过点的直线解析式为将两点坐标代入得解得:∴过点的直线解析式为.【点睛】本题考查了翻折的性质,三角形全等,勾股定理,一次函数等知识.解题的关键在于将知识灵活综合运用.5、 (1)k=;(2)−1<k<,且k≠0.【解析】【分析】(1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;(2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.(1)解:设OA的中点为M,∵O(0,0),A(4,0),∴OA=4,∴OM=2,∴M(2,0),∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,∴,解得:k=;(2)如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,当一次函数y=kx+b的图象过B、P两点时,代入表达式y=kx+b得到:,解得:k=-1,当一次函数y=kx+b的图象过A、P两点时,代入表达式y=kx+b得到:,解得:k=,所以−1<k<,由于要满足一次函数的存在性,所以−1<k<,且k≠0.【点睛】本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
相关试卷
这是一份数学八年级下册第二十一章 一次函数综合与测试复习练习题,共26页。试卷主要包含了一次函数的大致图象是,下列函数中,一次函数是等内容,欢迎下载使用。
这是一份初中冀教版第二十一章 一次函数综合与测试课堂检测,共26页。试卷主要包含了下列不能表示是的函数的是,已知点,都在直线上,则,一次函数的图象不经过的象限是等内容,欢迎下载使用。
这是一份数学八年级下册第二十一章 一次函数综合与测试课后复习题,共25页。试卷主要包含了点A,若实数等内容,欢迎下载使用。