![2021-2022学年冀教版八年级数学下册第二十一章一次函数同步测评练习题(精选含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12764969/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十一章一次函数同步测评练习题(精选含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12764969/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十一章一次函数同步测评练习题(精选含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12764969/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题,共29页。试卷主要包含了已知一次函数y=kx+b等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A. B.C. D.2、已知点A的坐标为,点A关于x轴的对称点落在一次函数的图象上,则a的值可以是( )A. B. C. D.3、一次函数的图象一定经过( )A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限4、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-5、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )A. B.C. D.6、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).A.快艇的速度比可疑船只的速度快0.3海里/分B.5分钟时快艇和可疑船只的距离为3.5海里C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶D.当快艇出发分钟后追上可疑船只,此时离海岸海里7、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:x…﹣2﹣1012…y1…12345… x…﹣2﹣1012…y2…52﹣1﹣4﹣7…则关于x的不等式kx+b>mx+n的解集是( )A.x>0 B.x<0 C.x<﹣1 D.x>﹣18、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )A. B. C. D.9、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是( )A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣110、如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用表示小球滚动的时间,表示小球的速度.下列能表示小球在斜坡上滚下时与的函数关系的图象大致是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.2、求kx+b>0(或<0)(k≠0)的解集从函数值看:y=kx+b的值大于(或小于)0时,_____的取值范围从函数图象看:直线y=kx+b在_____上方(或下方)的x取值范围3、在平面直角坐标系xOy中,过点A(5,3)作y轴的平行线,与x轴交于点B,直线y=kx+b(k,b为常数,k≠0)经过点A且与x轴交于点C(9,0).我们称横、纵坐标都是整数的点为整点.(1)记线段AB,BC,CA围成的区域(不含边界)为W.请你结合函数图象,则区域W内的整点个数为______;(2)将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围______.4、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.5、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点,,,且,,满足关于,的二元一次方程,直线经过点,且直线轴,点为直线上的一个动点,连接,,.(1)求,,的值;(2)在点运动的过程中,当三角形的面积等于三角形的面积的时,求的值;(3)在点运动的过程中,当取得最小值时,直接写出的值.2、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;(2)求甲、乙两人在途中相遇的时间.3、一个皮球从16m的高处落下,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半,h表示反弹高度(单位:m),n表示落地次数.(1)写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式;(2)求皮球第几次落地后的反弹高度为m.4、如图,在平面角坐标系中,点B在y轴的负半轴上(0,﹣2),过原点的直线OC与直线AB交于C,∠COA=∠OCA=∠OBA=30°(1)点C坐标为 ,OC= ,△BOC的面积为 ,= ;(2)点C关于x轴的对称点C′的坐标为 ;(3)过O点作OE⊥OC交AB于E点,则△OAE的形状为 ,请说明理由;(4)在坐标平面内是否存在点F使△AOF和△AOB全等,若存在,请直接写出F坐标,请说明理由.5、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由. -参考答案-一、单选题1、A【解析】【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【详解】解:作AD∥x轴,作CD⊥AD于点D,如图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOB=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.2、C【解析】【分析】由点和点关于轴对称,可求出点的坐标,再利用一次函数图象上点的坐标特征可得出关于的方程,解之即可得出结论.【详解】解:点和点关于轴对称,点的坐标为.又点在直线上,,.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征以及关于轴、轴对称的点的坐标,解题的关键是牢记直线上任意一点的坐标都满足函数关系式.3、C【解析】【分析】k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限.【详解】解:∵k=-2<0,b=-3<0,∴函数的图象经过第二、三、四象限,故选:C.【点睛】本题考查了一次函数的性质,k>0,函数一定经过第一,三象限,k<0,函数一定经过第二,四象限,再根据直线与y轴的交点即可得出函数所过的象限,这是解题的关键.4、C【解析】略5、D【解析】【分析】根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.【详解】A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;故选:D.【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.6、C【解析】【分析】根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.【详解】解:快艇的速度为,可疑船只的速度为(海里/分),∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;设快艇出发t分钟后追上可疑船只,,解得t=,这时离海岸海里,故D选项不符合题意;故选:C.【点睛】此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.7、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.8、C【解析】【分析】根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.【详解】解:函数的图象与函数的图象互相平行,∴,∴,当时,,选项A不在直线上;当时,,选项B不在直线上;当时,,选项C在直线上;当时,,选项D不在直线上;故选:C.【点睛】题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.9、D【解析】【分析】根据题意和一次函数的性质,可以解答本题.【详解】解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,∴b=-1,k>0,故选:D.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.10、C【解析】【分析】静止开始沿一个斜坡滚下,其速度每秒增加的值相同即可判断.【详解】解:由题意得,小球从静止开始,设速度每秒增加的值相同为.,即.故是正比例函数图象的一部分.故选:C.【点睛】本题考查了函数关系式,这是一个跨学科的题目,实际上是利用“即时速度初始速度加速度时间”,解题的关键是列出函数关系式.二、填空题1、0【解析】【分析】根据一次函数的定义,列出关于m的方程和不等式进行求解即可.【详解】解:由题意得,|m-1|=1且m-2≠0,解得:m=2或m=0且m≠2,∴m=0.故答案为:0.【点睛】本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.2、 x x轴【解析】略3、 3 ≤n<【解析】【分析】(1)根据题意和图象,可以得到区域W内的整点个数;(2)根据直线y=kx+b过点A和点C,从而可以得到直线的表达式是y=-x+,设平移后的直线解析式是y=-x+m,分别代入(6,2)、(6,1)求得m的值,结合图象即可求得.【详解】解:(1)由图象可得,区域W内的整点的坐标分别为(6,1),(6,2),(7,1),即区域W内的整点个数是3个,故答案为:3;(2)∵直线y=kx+b过点A(5,3),点C(9,0),∴,∴,即直线y=kx+b的表达式是y=﹣x+,设平移后的直线解析式是y=﹣x+m,把(6,2)代入得,2=﹣+m,解得m=,则﹣=,把(6,1)代入得,1=﹣+m,解得m=,则﹣=,由图象可知,将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围≤n<.故答案为:≤n<.【点睛】本题考查了一次函数图象与几何变换、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.4、【解析】【分析】根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.【详解】∵直线与相交于点∴的坐标既满足,也满足∴是方程组的解 故答案为:【点睛】本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.5、自变量【解析】略三、解答题1、 (1),,(2)或(3)【解析】【分析】(1)根据二次根式有意义的条件求出c,根据二元一次方程的定义列出方程组,解方程组求出a、b;(2)根据三角形的面积公式求出△AOB的面积,根据S△ABD=×S△AOB求出S△ABD,根据三角形的面积公式计算,得到答案;(3)利用待定系数法求出直线AB的解析式,进而求出m.(1)由和可知,,,,由二元一次方程的定义,得,解得:,,,;(2)设与直线交于,连接,由(1)可知:,,,,,,,即,解得:,,,解得:或;(3)当取得最小值时,点在上,设直线的解析式为:,则,解得:,直线的解析式为:,当时,,的值为.【点睛】本题考查的是二次根式有意义的条件、二元一次方程的定义、三角形的面积计算、函数解析式的确定,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.2、 (1)图象见解析;(2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【解析】【分析】(1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;(2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.(1)乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.(2)根据题意结合图象可知甲、乙两人在途中相遇3次.如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,根据题意可设的解析式为:,∴,解得:,∴的解析式为.∵甲的步行速度为100m/min,他每走半个小时就休息15min,∴甲第一次休息时走了米,对于,当时,即,解得:.故第一次相遇的时间为40分钟的时候;设BC段的解析式为:,根据题意可知B(45,3000),D (75,6000).∴,解得:,故BC段的解析式为:.相遇时即,故有,解得:.故第二次相遇的时间为60分钟的时候;对于,当时,即,解得:.故第三次相遇的时间为80分钟的时候;综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【点睛】本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.3、 (1)h(n为正整数);(2)皮球第7次落地后的反弹高度为m.【解析】【分析】(1)由题意可知,每次落地后的反弹高度都减半,依次可得表示反弹高度与落地次数的对应函数关系;(2)把h代入(1)中解析式即可解题.(1)解:根据题意得,表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式:h(n为正整数);(2)把h代入h,得,2n=16×8=27,n=7故皮球第7次落地后的反弹高度为m.【点睛】本题考查一次函数的应用,是基础考点,掌握相关知识是解题关键.4、 (1)(3,),2,3,(2)(3,)(3)等边三角形,见解析(4)存在,(0,)或(0,﹣)或(2,)或(2,﹣).【解析】【分析】(1)先根据等角对等边,确定OB=OC=,再通过构造垂线法,分别求出相关线段的长,根据点所在象限,确定点的坐标;根据面积公式,选择适当的底边计算即可;利用同底的两个三角形面积之比等于对应高之比计算即可;(2)根据点关于x轴对称的特点,直接写出坐标即可;(3)根据三个角是60°的三角形是等边三角形判定即可;(4)利用全等三角形的判定定理,综合运用分类思想求解.(1)解:(1)∵点B(0,﹣2),∴OB=,∵∠COA=∠OCA=∠OBA=30°,∴OB=OC=,过点C作CD⊥x轴于点D, ∴CD==,DO==3,∵点C在第一象限;∴C(3,),∴=;∴,故答案为:(3,),2,3,.(2)∵C(3,),点C与点C'关于x轴对称,∴C'(3,﹣).故答案为:(3,﹣).(3)∵OE⊥OC,∴∠COE=90°,∵∠COA=30°,∴∠AOE=60°,∵∠OAE=60°,∴∠AOE=∠OAB=60°,∴△OAE是等边三角形,故答案为:等边三角形.(4)解:①如图1,当△AOB≌△AOF时,∵OB=,∴OF=,∴(0,),(0,﹣),②如图2,当△AOB≌OAF时,设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=x,令y=0,得x=2,∴点A的坐标为(2,0),∵△AOB≌OAF,∴OB=AF=,∴F3(2,),F4(2,﹣),综上所述,存在点F,且点F的坐标是(0,)或(0,﹣)或(2,)或(2,﹣).【点睛】本题考查了等角对等边,坐标与象限,勾股定理,点的对称,函数解析式,等边三角形的判定,三角形全等的判定,分类思想,熟练掌握待定系数法,灵活运用三角形全等的判定是解题的关键.5、 (1)y甲=25x+2 000;y乙=35x(2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析【解析】【分析】(1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;(2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得(1)解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),依题意得y甲=25x+2 000;y乙=35x;(2)解:当y甲>y乙时,即25x+2 000>35x,解得:x<200;当y甲=y乙时,即25x+2 000=35x,解得:x=200;当y甲<y乙时,即25x+2 000<35x,解得:x>200.∴当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.【点睛】此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.
相关试卷
这是一份冀教版第二十一章 一次函数综合与测试课堂检测,共30页。试卷主要包含了下列函数中,属于正比例函数的是,巴中某快递公司每天上午7等内容,欢迎下载使用。
这是一份2021学年第二十一章 一次函数综合与测试同步训练题,共29页。试卷主要包含了已知点,已知一次函数y=kx+b,一次函数y=mx﹣n,下列不能表示是的函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试达标测试,共28页。试卷主要包含了直线不经过点,一次函数的图象不经过的象限是,下列不能表示是的函数的是,若一次函数等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)