![2021-2022学年冀教版八年级数学下册第二十一章一次函数同步训练练习题(精选含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12764972/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十一章一次函数同步训练练习题(精选含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12764972/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十一章一次函数同步训练练习题(精选含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12764972/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试达标测试
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试达标测试,共28页。试卷主要包含了直线不经过点,一次函数的图象不经过的象限是,下列不能表示是的函数的是,若一次函数等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列语句是真命题的是( ).A.内错角相等
B.若,则
C.直角三角形中,两锐角和的函数关系是一次函数
D.在中,,那么为直角三角形
2、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).
x(千米)
0
100
150
300
450
500
y(升)
10
8
7
4
1
0
A.正比例函数关系 B.一次函数关系
C.二次函数关系 D.反比例函数关系
3、下列问题中,两个变量成正比例的是( )
A.圆的面积S与它的半径r
B.三角形面积一定时,某一边a和该边上的高h
C.正方形的周长C与它的边长a
D.周长不变的长方形的长a与宽b
4、直线不经过点( )
A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)
5、一次函数的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、下列不能表示是的函数的是( )
A.
0
5
10
15
3
3.5
4
4.5
B.
C.
D.
7、如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用表示小球滚动的时间,表示小球的速度.下列能表示小球在斜坡上滚下时与的函数关系的图象大致是( )
A. B.
C. D.
8、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
A.且 B.且
C.且 D.且
9、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )
A. B. C.3h D.
10、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )
A.①② B.①③ C.②④ D.①②④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
2、将直线向上平移1个单位后的直线的表达式为______.
3、求kx+b>0(或<0)(k≠0)的解集
从函数值看:y=kx+b的值大于(或小于)0时,_____的取值范围
从函数图象看:直线y=kx+b在_____上方(或下方)的x取值范围
4、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.
5、如果点P1(3,y1),P2(2,y2)在一次函数y=8x-1的图像上,那么y1______y2.(填“>”、“<”或“=”)
三、解答题(5小题,每小题10分,共计50分)
1、为了做好防疫工作,学校准备购进一批消毒液.已知A型消毒液7元/瓶,B型消毒液9元/瓶.学校准备购进这两种消毒液共90瓶.
(1)写出购买所需总费用w元与A瓶个数x之间的函数表达式;
(2)若B型消毒液的数量不少于A型消毒液数量的,请设计最省钱的购买方案,并求出最少费用.
2、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:
A种产品
B种产品
成本价(元/件)
400
300
销售价(元/件)
560
450
(1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?
(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?
3、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.
(1)分别求出这两个函数的解析式;
(2)点在轴上,且是等腰三角形,请直接写出点的坐标.
4、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.
(1)N95型和一次性成人口罩每箱进价分别为多少元?
(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?
(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?
5、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).
(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.
【详解】
解:A、两直线平行,内错角相等,故原命题是假命题,不符合题意;
B、若,则,故原命题是假命题,不符合题意;
C、直角三角形中,两锐角和的函数关系是一次函数,故原命题是真命题,符合题意;
D、在中,,那么最大角∠C=,故△ABC为锐三角形,故原命题是假命题,不符合题意;
故选:C.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.
2、B
【解析】
【分析】
根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可
【详解】
根据表格数据,描点、连线画出函数的图象如图:
故y与x的函数关系是一次函数.
故选B.
【点睛】
本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.
3、C
【解析】
【分析】
分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
【详解】
解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
所以正方形的周长C与它的边长a成正比例,故C符合题意;
所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
故选C
【点睛】
本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
4、B
【解析】
【分析】
将各点代入函数解析式即可得.
【详解】
解:A、当时,,即经过点,此项不符题意;
B、当时,,即不经过点,此项符合题意;
C、当时,,即经过点,此项不符题意;
D、当时,,即经过点,此项不符题意;
故选:B.
【点睛】
本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.
5、C
【解析】
【分析】
根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数的图象经过第一、二、四象限,此题得解.
【详解】
解:∵k=-2<0,b=1>0,
∴一次函数y=-2x+1的图象经过第一、二、四象限,
∴一次函数y=-2x+1的图象不经过第三象限.
故选:C.
【点睛】
本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.
6、B
【解析】
【分析】
根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
【详解】
解:A、根据图表进行分析为一次函数,设函数解析式为:,
将,,,
分别代入解析式为:
,
解得:,,
所以函数解析式为:,
∴y是x的函数;
B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
C、D选项从图象及解析式看可得y是x的函数.
故选:B.
【点睛】
题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
7、C
【解析】
【分析】
静止开始沿一个斜坡滚下,其速度每秒增加的值相同即可判断.
【详解】
解:由题意得,
小球从静止开始,设速度每秒增加的值相同为.
,
即.
故是正比例函数图象的一部分.
故选:C.
【点睛】
本题考查了函数关系式,这是一个跨学科的题目,实际上是利用“即时速度初始速度加速度时间”,解题的关键是列出函数关系式.
8、D
【解析】
【分析】
根据一次函数图象与系数的关系解答即可.
【详解】
解:一次函数、是常数,的图象不经过第三象限,
且,
故选:D.
【点睛】
本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
9、A
【解析】
【分析】
根据图象得出,慢车的速度为 km/h,快车的速度为 km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.
【详解】
解:根据图象可知,慢车的速度为 km/h.
对于快车,由于往返速度大小不变,总共行驶时间是6h,
因此单程所花时间为3 h,故其速度为 km/h.
所以对于慢车,y与t的函数表达式为y=t (0≤t≤9)①.
对于快车,y与t的函数表达式为
y=,
联立①②,可解得交点横坐标为t=4.5,
联立①③,可解得交点横坐标为t=,
因此,两车先后两次相遇的间隔时间是,
故选:A.
【点睛】
本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.
10、A
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由题意可得:甲步行的速度为(米分);
由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,
故①结论正确;
∴乙步行的速度为米/分,
故②结论正确;
乙走完全程的时间(分),
乙到达终点时,甲离终点距离是:(米),
故③结论错误;
设9分到23分钟这个时刻的函数关系式为,则把点代入得:
,解得:,
∴,
设23分钟到30分钟这个时间的函数解析式为,把点代入得:
,解得:,
∴,
把分别代入可得:或,
故④错误;
故正确的结论有①②.
故选:A.
【点睛】
本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.
二、填空题
1、一次函数
【解析】
略
2、
【解析】
【分析】
直线向上平移1个单位,将表达式中x保持不变,等号右面加1即可.
【详解】
解:由题意知平移后的表达式为:
故答案为.
【点睛】
本题考查了一次函数的平移.解题的关键在于明确一次函数图象平移时左加右减,上加下减.
3、 x x轴
【解析】
略
4、2(满足k>0即可)
【解析】
【分析】
根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.
【详解】
解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,
∴k>0.
故答案为:2(满足k>0即可).
【点睛】
本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.
5、
【解析】
【分析】
先求出y1,y2的值,再比较出其大小即可.
【详解】
解:∵点P1(3,y1)、P2(2,y2)在一次函数y=8x-1的图象上,
∴y1=8×3-1=23,y2=8×2-1=15,
∵23>15,
∴y1>y2.
故答案为:>.
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
三、解答题
1、 (1)w=-2x+810
(2)最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元
【解析】
【分析】
(1)A瓶个数为x,则B瓶个数为(90-x),根据题意列式计算即可;
(2)根据B型消毒液的数量不少于A型消毒液数量的,可以得到A型消毒液数量的取值范围,再根据一次函数的性质,即可求得最省钱的购买方案,计算出最少费用.
(1)
解:A瓶个数为x,则B瓶个数为(90-x),
依题意可得:w=7x+9(90-x)=-2x+810;
(2)
解:∵B型消毒液的数量不少于A型消毒液数量的,
∴,解得,
由(1)知w=﹣2x+810,
∴w随x的增大而减小,
∴当x=67时,w取得最小值,
此时w=﹣2×67+810=676,90﹣x=23,
答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元.
【点睛】
本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是列出相应的方程组和列出相应的函数关系式,利用一次函数的性质和不等式的性质解答.
2、 (1)A种产品生产400件,B种产品生产200件
(2)A种产品生产1000件时,利润最大为460000元
【解析】
【分析】
(1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;
(2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.
(1)
解:设A种产品生产x件,则B种产品生产(600-x)件,
由题意得:,
解得:x=400,
600-x=200,
答:A种产品生产400件,B种产品生产200件.
(2)
解:设A种产品生产x件,总利润为w元,由题意得:
由,
得:,
因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.
【点睛】
本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
3、 (1)正比例函数的解析式为:,一次函数的解析式为:
(2)或或或
【解析】
【分析】
(1)把点代入可得,再由,可得点 ,即可求解;
(2)分三种情况:当OP=OA=5时,当AP=OA时,当AP=OP时,即可求解.
(1)
解:∵一次函数的图象与轴交于点,与正比例函数的图象相交于点,
∴,解得:
∴正比例函数的解析式为:,
∵,
∴ ,
∵,
∴ ,
∴点 ,
把点, 代入,得:
b=-53k2+b=4 ,解得: ,
∴一次函数的解析式为:;
(2)
解:当OP=OA=5时,点的坐标为或;
当AP=OA时,过点A作 轴于点C,
∴OC=PC=3,
∴OP=6,
∴点;
当AP=OP时,过点P作PD⊥OA于点D,过点D作 轴于点E,
∴点D为AO的中点,即 ,
∵点,
∴点 ,
∴ ,
设点 ,则 ,
∴ ,
∵ ,
∴ ,
即 ,
解得: 或 (舍去)
∴点 ,
综上所述,点P的坐标为或或或.
【点睛】
本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.
4、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
【解析】
【分析】
(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可;
(2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值;
(3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.
【详解】
(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得:
,解得: ,
答:N95型和一次性成人口罩每箱进价分别为2250元、500元.
(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:
.
解得:a≤40.∵a取正整数,0<a≤40.
∴a的最大值为40.
答:最多可购进N95型40箱.
(3)解:设购进的口罩获得最大的利润为w,
则依题意得:w=500a+100(80﹣a)=400a+8000,
又∵0<a≤40,∴w随a的增大而增大,
∴当a=40时,W=400×40+8000=24000元.
即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
答:最大利润为24000元.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.
5、 (1)点E,点F;
(2)()或();
(3)b的取值范围1<b<2或2<b<3.
【解析】
【分析】
(1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
(2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
(3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
(1)
解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
∴△ABE为直角三角形,且AE大于AB;
以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,
∴点E与点F是AB关联点,
点G不在A、B两点垂直的直线上,故不能构成直角三角形,
故答案为点E,点F;
(2)
解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
∴△AOB为等腰直角三角形,AB=
∴∠ABO=∠BAO=45°,
以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
∴∠OAS=90°-∠BAO=45°,
∴△AOS为等腰直角三角形,
∴OS=OA=1,点S(1,0),
设AS解析式为代入坐标得:
,
解得,
AS解析式为,
∴,
解得,
点P(),
AP=,AP>AB
以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
∴∠OBR=90°-∠ABO=45°,
∴△OBR为等腰直角三角形,
∴OR=OB=1,点R(0,-1),
过点R与AS平行的直线为AS直线向下平移2个单位,
则BR解析式为,
∴,
解得,
点P1(),
AP1=>,
∴点P为线段AB的关联点,点P的坐标为()或();
(3)
解:过点A与AB垂直的直线交直线y=2x+2于U,
把△AOB绕点A顺时针旋转90°,得△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(-1,b-1)在直线上,
∴
∴,
∴当b>1时存在两个“关联点”,
当b<1时,UA<AB,不满足定义,没有两个“关联点”
当过点A的直线与直线平行时没有 “关联点”
与x轴交点X(-1,0),与y轴交点W(0,2)
∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
∴△OXW顺时针旋转90°,得到△OAB,
∴OB=OW=2,
∴在1<b<2时,直线上存在两个AB的“关联点”,
当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(1,1+b)在直线上,
∴
∴解得
∴当2<b<3时, 直线上存在两个AB的“关联点”,
当b>3时,UA<AB,不满足定义,没有两个“关联点”
综合得,b的取值范围1<b<2或2<b<3.
【点睛】
本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了若一次函数,若实数,下列不能表示是的函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试巩固练习,共30页。试卷主要包含了直线不经过点,已知等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共28页。