搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版八年级数学下册第二十一章一次函数专项训练试卷(精选含详解)

    2021-2022学年最新冀教版八年级数学下册第二十一章一次函数专项训练试卷(精选含详解)第1页
    2021-2022学年最新冀教版八年级数学下册第二十一章一次函数专项训练试卷(精选含详解)第2页
    2021-2022学年最新冀教版八年级数学下册第二十一章一次函数专项训练试卷(精选含详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共29页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数的图象一定经过(     A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限2、如图,一次函数yax+b的图象与ycx+d的图象如图所示且交点的横坐标为4,则下列说法正确的个数是(  )①对于函数yax+b来说,yx的增大而减小;②函数yax+d不经过第一象限;③方程ax+b=cx+d的解是x=4;④ d-b=4(a-c).A.1 B.2 C.3 D.43、点A(3,)和点B(-2,)都在直线y=-2x+3上,则的大小关系是(       A. B. C. D.不能确定4、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式(       A.y=54xx>2) B.y=54x+10(x>2)C.y=54x-90(x>2) D.y=54x+100(x>2)5、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有(  )①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车A.0个 B.1个 C.2个 D.3个6、在平面直角坐标系中,正比例函数ykxk<0)的图象的大致位置只可能是(       A. B.C. D.7、如图,点A的坐标为,点Bx轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示yx的函数关系的图象大致是(       A. B.C. D.8、一次函数的大致图象是(       A. B.C. D.9、如图,点,若点Px轴上一点,当最大时,点P的坐标为(   )A. B. C. D.10、如图,在RtABO中,∠OBA=90°,A(4,4),且,点DOB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为(       A.(2,2) B.( C.( D.(第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、请写出一个过第二象限且与轴交于点的直线表达式___.2、如图,直线l是一次函数ykxb的图象,填空:(1)b=______,k=______;(2)当x=30时,y=______;(3)当y=30时,x=______.3、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.4、 “”是一款数学应用软件,用“”绘制的函数的图像如图所示.若分别为方程的一个解,则根据图像可知____.(填“”、“”或“”).5、已知正比例函数ykxk≠0)的函数值yx增大而减小,则直线:y=﹣kxk不经过第____象限.三、解答题(5小题,每小题10分,共计50分)1、已知 AB 两地相距 3km,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km)与他行驶所用的时间 x(min)之间的关系.根据图像解答下列问题:(1)甲骑车的速度是      km/min;(2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y (km)与所用时间 x(min)的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.2、一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t(小时),航行的路程为s(千米),st的函数图像如图所示.(1)甲乙两地相距    千米;(2)轮船顺水航行时航行的路程s关于所用时间t的函数关系式为    ,定义域是    (3)如果轮船从乙地逆水航行返回到甲地时的速度为20千米/小时,那么点M的坐标是    3、如图,在△ABC中,∠ACB=90°,ACBCBCy轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),求点D的坐标.4、甲、乙两车从M地出发,沿同一路线驶向N地,甲车先出发匀速驶向N地,30分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了40km/h,结果两车同时到达N地,甲乙两车距N地的路程y(km)与乙车行驶时间x(h)(1)a      ,甲的速度是      km/h.(2)求线段AD对应的函数表达式.(3)直接写出甲出发多长时间,甲乙两车相距10km.5、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表: 普通板栗(件)精品板栗(件)总金额(元)甲购买情况23350乙购买情况41300(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少? -参考答案-一、单选题1、C【解析】【分析】k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限.【详解】解:∵k=-2<0,b=-3<0,∴函数的图象经过第二、三、四象限,故选:C.【点睛】本题考查了一次函数的性质,k>0,函数一定经过第一,三象限,k<0,函数一定经过第二,四象限,再根据直线与y轴的交点即可得出函数所过的象限,这是解题的关键.2、C【解析】【分析】仔细观察图象:①观察函数图象可以直接得到答案;②观察函数图象可以直接得到答案;③根据函数yax+b的图象与ycx+d的图象如图所示且交点的横坐标为4可以得到答案;④根据函数yax+b的图象与ycx+d的图象如图所示且交点的横坐标为4可以得到答案.【详解】解:由图象可得,对于函数yax+b来说,yx的增大而减小故①正确;函数yax+d图象经过第一,三,四象限,即不经过第二象限,故②不正确,一次函数yax+b的图象与ycx+d的图象如图所示且交点的横坐标为4,所以方程ax+b=cx+d的解是x=4;故③正确;∵一次函数yax+b的图象与ycx+d的图象如图所示且交点的横坐标为4,∴4a+b=4c+dd-b=4(a-c),故④正确.综上所述,正确的结论有3个.故选:C.【点睛】本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.3、C【解析】【分析】利用一次函数的增减性性质判定即可.【详解】∵直线y=-2x+3的k=-2<0,yx的增大而减小,∵-2<3,故选C【点睛】本题考查了一次函数的增减性,熟练掌握性质是解题的关键.4、B【解析】【分析】由题意得,则销售价超过100元,超过的部分为,即可得.【详解】解:∵∴销售价超过100元,超过的部分为且为整数),故选B.【点睛】本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.5、C【解析】【分析】求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx∴6k=300,解得k=50,=50x∴甲车的速度为∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h)到达城,∴②错误;即甲行驶4小时,乙追上甲,∴③正确;故选C【点睛】本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.6、A【解析】7、A【解析】【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立yx的函数关系,从而可以得到哪个选项是正确的.【详解】解:作ADx轴,作CDAD于点D,如图所示,由已知可得,OB=xOA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是yADx轴,∴∠DAO+∠AOB=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC在△OAB和△DAC∴△OAB≌△DACAAS),OB=CDCD=x∵点Cx轴的距离为y,点Dx轴的距离等于点Ax的距离1,y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.8、A【解析】【分析】知直线必过,据此求解可得.【详解】解:时,则直线必过如图满足条件的大致图象是:故选:A.【点睛】本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当时,图象过一、二、三象限;②当时,图象过一、三、四象限;③当时,图象过一、二、四象限;④当时,图象过二、三、四象限.9、A【解析】【分析】作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.【详解】解:如图,作点A关于x轴的对称点,则PA=(当PB共线时取等号),连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),设直线的函数表达式为y=kx+b(1,-1)、B(2,-3)代入,得:,解得:y=-2x+1,y=0时,由0=-2x+1得:x=∴点P坐标为(,0),故选:A【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.10、C【解析】【分析】先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.【详解】∵∠OBA=90°,A(4,4),且,点DOB的中点,∴点D(2,0),AC=1,BC=3,点C(4,3),设直线AO的解析式为y=kx∴4=4k,解得k=1,∴直线AO的解析式为y=x过点DDEAO,交y轴于点E,交AO于点F∵∠OBA=90°,A(4,4),∴∠AOE=∠AOB=45°,∴∠OED=∠ODE=45°,OE=ODDF=FE∴点E是点D关于直线AO的对称点,∴点E(0,2),连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,CE的解析式为y=mx+n解得∴直线CE的解析式为y=x+2,解得∴使四边形PDBC周长最小的点P的坐标为(),故选C.【点睛】本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.二、填空题1、(答案不唯一)【解析】【分析】因为直线过第二象限,与y轴交于点(0,-3),则b=-3.写一个满足题意的直线表达式即可【详解】解:直线过第二象限,且与轴交于点直线表达式为:故答案为:(答案不唯一).【点睛】本题考查了一次函数的图像和性质,解题的关键是熟记一次函数的图像和性质.2、     2          18     -42【解析】3、一次函数【解析】4、<【解析】【分析】根据方程的解是函数图象交点的横坐标,结合图象得出结论.【详解】解:∵方程-x2x-4)=-1的解为函数图象与直线y=-1的交点的横坐标,-x+4=-1的一个解为一次函数y=-x+4与直线y=-1交点的横坐标,如图所示:由图象可知:a<b.故答案为:<.【点睛】本题考查了函数图象与方程的解之间的关系,关键是利用数形结合,把方程的解转化为函数图象之间的关系.5、二【解析】【分析】根据正比例函数的图象和性质得出的取值范围,再根据的取值和一次函数的增减性进行判断即可.【详解】解:正比例函数的函数值增大而减小,即直线:中的因此直线经过一、三、四象限,不过第二象限,故答案为:二.【点睛】本题考查一次函数的图象和性质,解题的关键是掌握一次函数的图象和性质是正确判断的前提,理解一次函数的符号决定一次函数的性质也是正确判断的关键.三、解答题1、 (1)0.5(2)见解析(3)(),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y=0.5xy=1.8-0.2x,可得两个函数图象的交点坐标为(),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为x km/min,由题意得0.5×4-4x=1.2,x=0.2,AB两地相距3kmAC两地相距1.2km,BC两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y=0.5xy=1.8-0.2x由0.5x=1.8-0.2xx=x=时,y=y=∴两个函数图象的交点坐标为(),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.【点睛】本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.2、 (1)60(2)(3)【解析】【分析】(1)根据函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,由此即可得;(2)先判断出轮船顺水航行段对应的是图象中部分,再设此时关于的函数关系式为,利用待定系数法即可得;(3)根据图象可得返回时,行驶到点处所用时间,从而可得从乙地行驶到点的路程,由此即可得.(1)解:由函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,故答案为:60;(2)解:由题意得:轮船顺水航行段对应的是图象中部分,设此时关于的函数关系式为将点代入得:,解得关于的函数关系式为,定义域为故答案为:(3)解:由图象可知,返回时,行驶到点处所用时间为(小时),则从乙地到点的路程为(千米),所以点的纵坐标为所以点的坐标为故答案为:【点睛】本题考查了利用待定系数法求正比例函数的解析式、从函数图象获取信息,读懂函数图象是解题关键.3、(0,【解析】【分析】AB分别作AFx轴于FBEx轴于E,可证得△AFC≌△CEB,从而得到FCBEAFCE,再由点C的坐标为(-2,0),点A的坐标为(-6,3),可得OC=2,AFCE=3,OF=6,从而得到B点的坐标是(1,4),再求出直线BC的解析式,即可求解.【详解】解:过AB分别作AFx轴于FBEx轴于E∵∠ACB=90°,∴∠ACF+∠BCE=90°,AFx轴,BEx轴,∴∠ACF+∠CAF=90°,∴∠CAF=∠BCE在△AFC和△CEB中,∴△AFC≌△CEBAAS),FCBEAFCE∵点C的坐标为(-2,0),点A的坐标为(-6,3),OC=2,AFCE=3,OF=6,CFOF-OC=4,OECE-OC=2-1=1,BE=4,∴则B点的坐标是(1,4),设直线BC的解析式为:ykxb ,解得:   ∴直线BC的解析式为:yx ,则D(0,).【点睛】本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC≌△CEB是解题的关键.4、 (1)3.5小时,76;(2)线段AD对应的函数表达式为(3)甲出发小时,甲乙两车相距10km.【解析】【分析】(1)根据乙车3小时到货站,在货站装货耗时半小时,得出小时,甲提前30分钟,可求甲车行驶的时间为:0.5+4.5=5小时,然后甲车速度=千米/时即可;(2)利用待定系数法AD解析式为:,把AD两点坐标代入解析式得解方程即可;(3)分两种情况,甲出发,乙未出发76t=10,乙出发后,设乙车的速度为xkm/h,利用行程列方程3x+(x-40)×1=380解方程求出x=105km/h,再用待定系数法,列方程CD段乙车速度为105-40=65km/h,求出CD的解析式为,列方程,结合甲先行30分根据有理数加法求出甲所用时间即可.(1)解:∵3小时到货站,在货站装货耗时半小时,小时,甲车行驶的时间为:0.5+4.5=5小时,甲车速度=千米/时,故答案为:3.5小时,76;(2)A表示的路程为:76×0.5=38,AD解析式为:,把AD两点坐标代入解析式得:解得:线段AD对应的函数表达式为(3)甲出发乙未出发,∴76t=10,t=乙出发后;设乙车的速度为vkm/h,3v+(v-40)×1=380解得v=105km/h,∴点B(3,315)OB解析式为,代入坐标得:OB解析式为化简为:解得CD段乙车速度为105-40=65km/h,CD的解析式为代入点D坐标得,解得:CD的解析式为解得:∵甲提前出发30分钟,甲出发小时,甲乙两车相距10km.【点睛】本题考查待定系数法求一次函数解析式,利用函数图像获取信息,绝对值方程,一元一次方程,二元一次方程组解法,分类讨论思想的应用使问题完整解决是解题关键.5、 (1)普通板栗的单价为55元,精品板栗的单价为80元;(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【解析】【分析】(1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;(2)加工普通板栗a件,则加工精品板栗件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.(1)解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:解得答:普通板栗的单价为55元,精品板栗的单价为80元;(2)解:加工普通板栗a件,则加工精品板栗件,由题意得:∴当时,所获总利润w最多,答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【点睛】题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键. 

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了若一次函数,若实数,下列不能表示是的函数的是等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共28页。试卷主要包含了直线不经过点,如图,一次函数y=kx+b,已知一次函数y=kx+b等内容,欢迎下载使用。

    2020-2021学年第二十一章 一次函数综合与测试随堂练习题:

    这是一份2020-2021学年第二十一章 一次函数综合与测试随堂练习题,共27页。试卷主要包含了已知是一次函数,则m的值是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map