


数学第二十一章 一次函数综合与测试课后测评
展开
这是一份数学第二十一章 一次函数综合与测试课后测评,共27页。试卷主要包含了若直线y=kx+b经过一,已知一次函数y=,点A等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列函数中,y是x的一次函数的是( )
A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
2、当时,直线与直线的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、一次函数y=2x﹣5的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
A. B. C. D.
5、已知一次函数y=(1﹣3k)x+k的函数值y随x的增大而增大,且图象经过第一、二、三象限,则k的值( )
A.k>0 B.k<0 C.0<k< D.k<
6、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
A. B. C. D.
7、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有( )
①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车
A.0个 B.1个 C.2个 D.3个
8、点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为( )
A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y2
9、在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是( )
A. B.
C. D.
10、平面直角坐标系中,点的坐标为,一次函数的图像与轴、轴分别相交于点、,若点在的内部,则的取值范围为( )
A.或 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点(−2,y1),(−1,y2),(1,y3)都在直线y=−x+b上,则y1,y2,y3的值的大小关系是______.
2、求一元一次方程kx+b=0的解
从函数值看:求y=_____时一次函数y= kx+b中x的值
从函数图象看:求直线y= kx+b与_____交点的横坐标
3、已知 M(1, a )和 N(2, b )是一次函数 y=-x+1 图像上的两点,则 a______b (填“>”、“<”或“=”).
4、关于正比例函数y=2x,有下列结论:①函数图象都经过点(2,1);②函数图象经过第二、第四象限;③y随x的增大而增大;④不论x取何值,总有y>0,其中,错误的结论是______.
5、写出一个过点的一次函数解析式__.
三、解答题(5小题,每小题10分,共计50分)
1、已知一次函数,完成下列问题:
(1)求此函数图像与x轴、y轴的交点坐标;
(2)画出此函数的图像:观察图像,当时,x的取值范围是______.
2、对于平面直角坐标系xOy中的图形M和点P,给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(﹣4,3),B(4,3).
(1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是 ;
(2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;
(3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>2,请直接写出b的取值范围.
3、【数学阅读】
如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小明的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
【推广延伸】
如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.
【解决问题】
如图4,在平面直角坐标系中,点C在x轴正半轴上,点B在y轴正半轴上,且AB=AC.点B到x轴的距离为3.
(1)点B的坐标为_____________;
(2)点P为射线CB上一点,过点P作PE⊥AC于E,点P到AB的距离为d,直接写出PE与d的数量关系_______________________________;
(3)在(2)的条件下,当d=1,A为(-4,0)时,求点P的坐标.
4、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点
(1)若此一次函数图象经过平行四边形边的中点,求的值
(2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围
5、如图1,在平面直角坐标系中,直线分别与轴、轴交于、两点,直线分别与轴、轴交于、两点,点是上一点.
(1)求、的值;
(2)试判断线段与线段之间的关系,并说明理由;
(3)如图2,若点是轴上一点,点是直线上一动点,点是直线上一动点,当是以点为直角顶点的等腰三角形时,请直接写出相应的点、的坐标.
-参考答案-
一、单选题
1、B
【解析】
【分析】
利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
【详解】
解:∵y=不符合一次函数的形式,故不是一次函数,
∴选项A不符合题意;
∵形如y=kx+b(k,b为常数).
∴y=﹣3x+1中,y是x的一次函数.
故选项B符合题意;
∵y=2是常数函数,
∴选项C不符合题意;
∵y=x2+1不符合一次函数的形式,故不是一次函数,
∴选项D不符合题意;
综上,y是x的一次函数的是选项B.
故选:B.
【点睛】
本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
2、B
【解析】
【分析】
根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
【详解】
解:一次函数中,,
∴函数图象经过一二四象限
∵在一次函数中,,
∴直线经过一二三象限
函数图象如图
∴直线与的交点在第二象限
故选:.
【点睛】
本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
3、B
【解析】
【分析】
由直线的解析式得到k>0,b<0,利用一次函数的性质即可确定直线经过的象限.
【详解】
解:∵y=2x-5,
∴k>0,b<0,
故直线经过第一、三、四象限.
不经过第二象限.
故选:B.
【点睛】
此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.
4、B
【解析】
【分析】
根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
【详解】
解:∵直线y=kx+b经过一、二、四象限,
∴k<0,b>0,
∴﹣k>0,
∴直线y=bx﹣k过一、二、三象限,
∴选项B中图象符合题意.
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
5、C
【解析】
【分析】
根据一次函数的性质得1﹣3k>0,解得k<,再由图象经过一、二、三象限,根据一次函数与系数的关系得到k>0,于是可确定k的取值范围.
【详解】
解:∵一次函数y=(1﹣3k)x+k,y随x的增大而增大,
∴1﹣3k>0,解得k<,图象经过第一、三象限,
∵图象经过一、二、三象限,
∴k>0,
∴k的取值范围为0<k<.
故选:C.
【点睛】
本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
6、A
【解析】
【分析】
作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
【详解】
解:如图,作点A关于x轴的对称点,则PA=,
∴≤(当P、、B共线时取等号),
连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
设直线的函数表达式为y=kx+b,
将(1,-1)、B(2,-3)代入,得:
,解得:,
∴y=-2x+1,
当y=0时,由0=-2x+1得:x=,
∴点P坐标为(,0),
故选:A
【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
7、C
【解析】
【分析】
求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.
【详解】
设甲的解析式为y=kx,
∴6k=300,
解得k=50,
∴=50x,
∴甲车的速度为,
∴①正确;
∵乙晚出发2小时,
∴乙车用了5-2=3(h)到达城,
∴②错误;
设,
∴,
∴,
∴,
∵,
∴,
即甲行驶4小时,乙追上甲,
∴③正确;
故选C.
【点睛】
本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.
8、B
【解析】
【分析】
由直线y=-2x的解析式判断k=−2
相关试卷
这是一份初中第二十一章 一次函数综合与测试同步达标检测题,共25页。试卷主要包含了已知是一次函数,则m的值是,点A等内容,欢迎下载使用。
这是一份冀教版第二十一章 一次函数综合与测试复习练习题,共34页。试卷主要包含了巴中某快递公司每天上午7,一次函数的大致图象是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共29页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。
