冀教版八年级下册第二十一章 一次函数综合与测试综合训练题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共34页。
八年级数学下册第二十一章一次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在平面直角坐标系中,,,,点D在线段BA上,点E在线段BA的延长线上,并且满足,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为( )
A. B. C. D.
2、关于函数y=-2x+1,下列结论正确的是( )
A.图像经过点 B.y随x的增大而增大
C.图像不经过第四象限 D.图像与直线y=-2x平行
3、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式( )
A.y=54x(x>2) B.y=54x+10(x>2)
C.y=54x-90(x>2) D.y=54x+100(x>2)
4、如图,函数和的图像相交于点P(1,m),则不等式的解集为( )
A. B. C. D.
5、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.
A.1.5 B.2 C.2.5 D.3
6、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )
A. B.
C. D.
7、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
A. B.y随x的增大而增大
C.当时, D.关于x的方程的解是
8、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )
A. B. C. D.
9、下列函数中,y是x的一次函数的是( )
A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
10、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、己知y是关于x的一次函数,下表给出的4组自变量x的值及其对应的函数y的值,其中只有一个y的值计算有误,则它的正确值是_______.
x
0
1
2
3
y
20
17
14
10
2、如图,在平面直角坐标系中,点A,A1,A2,…在x轴上,分别以OA,AA1,A1A2,…为边在第一象限作等边△OAP,等边△AA1P1,等边△A1A2P2,…,且A点坐标为(2,0),直线y=kx+(k>0)经过点P,P1,P2,…,则点P2022的纵坐标为______.
3、当k>0时,直线y=kx+b由左到右逐渐______,y随x的增大而______.
① b>0时,直线经过第______象限;
② b<0时,直线经过第______ 象限.
当k<0时,直线y=kx+b由左到右逐渐______,y随x的增大而______.
①b>0时,直线经过第______象限;
② b<0时,直线经过第______象限.
4、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .
5、如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.
三、解答题(5小题,每小题10分,共计50分)
1、经开区某中学计划举行一次知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于乙种奖品的一半,应如何购买才能使总费用最少?并求出最少费用.
2、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).
(1)求这个一次函数的解析式;
(2)若这个一次函数的图象与x轴的交点为C,求△BOC的面积.
3、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点
(1)若此一次函数图象经过平行四边形边的中点,求的值
(2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围
4、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).
(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
5、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.
(1)求k的值;
(2)求四边形OCNB的面积;
(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.
-参考答案-
一、单选题
1、A
【解析】
【分析】
过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,求出直线AB、AC的解析式,设出点D、E、M的坐标,根据△DGM≌△MFE,建立方程求解即可.
【详解】
解:过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,
设直线AB的解析式为,把,代入得,
,解得,,
∴AB的解析式为,
同理可求直线AC的解析式为,
设点D坐标为,点M坐标为,
∵,
∴
∵,,
∴点E是由点D向右平移3个单位,向上平移9个单位得到的,则点E坐标为,
∵∠EFM=∠DGM=∠DME
∴∠FEM+∠FME=∠DMG+∠FME =90°,
∴∠FEM =∠DMG,
∵DM=EM,
∴△DGM≌△MFE,
∴DG=FM,GM=EF,
根据坐标可列方程组,b-a=3a+18+1.5b-9-1.5b+9-3a-9=b-a-3,
解得,,
所以,点M坐标为,
故选:A.
【点睛】
本题考查了求一次函数解析式和全等三角形的判定与性质,解题关键是求出直线解析式,设出点的坐标,利用全等三角形建立方程.
2、D
【解析】
【分析】
根据一次函数的性质对各选项进行逐一判断即可.
【详解】
解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;
B、由于k=−2<0,则y随x增大而减小,故本选项错误;
C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;
D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;
故选:D.
【点睛】
本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
3、B
【解析】
【分析】
由题意得,则销售价超过100元,超过的部分为,即可得.
【详解】
解:∵,
∴销售价超过100元,超过的部分为,
∴(且为整数),
故选B.
【点睛】
本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.
4、B
【解析】
【分析】
由题意首先确定y=mx和y=kx-b的交点以及作出y=kx-b的大体图象,进而根据图象进行判断即可.
【详解】
解:∵y=kx+b的图象经过点P(1,m),
∴k+b=m,
当x=-1时,kx-b=-k-b=-(k+b)=-m,
即(-1,-m)在函数y=kx-b的图象上.
又∵(-1,-m)在y=mx的图象上.
∴y=kx-b与y=mx相交于点(-1,-m).
则函数图象如图.
则不等式-b≤kx-b≤mx的解集为-1≤x≤0.
故选:B.
【点睛】
本题考查一次函数与不等式的关系,运用数形结合思维分析并正确确定y=kx-b和y=mx的交点是解题的关键.
5、B
【解析】
【分析】
根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.
【详解】
解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),
设甲出发x小时后与乙相遇,
根据题意得8+4(x﹣1)+4x=20,
解得x=2.
即甲出发2小时后与乙相遇.
故选:B.
【点睛】
本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
6、C
【解析】
【分析】
由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
【详解】
解:令直线中,得到,故,
令直线中,得到,故,
由勾股定理可知:,
∵,且,
∴,,
过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:
∵为等边三角形,
∴,
∴,
∴,
∴,
∴,
同理,∵为等边三角形,
∴,,
∴,
∴,
∴,
设直线CD的解析式为:y=kx+b,代入和,
得到:,解得,
∴CD的解析式为:,
与直线联立方程组,
解得,故E点坐标为,
故选:C.
【点睛】
本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
7、D
【解析】
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
8、D
【解析】
【分析】
先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.
【详解】
解: 一次函数,其中y的值随x值的增大而减小,
当时,则 解得,故A不符合题意,
当时,则 解得 故B不符合题意;
当时,则 解得 故C不符合题意;
当时,则 解得 故D符合题意;
故选D
【点睛】
本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.
9、B
【解析】
【分析】
利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
【详解】
解:∵y=不符合一次函数的形式,故不是一次函数,
∴选项A不符合题意;
∵形如y=kx+b(k,b为常数).
∴y=﹣3x+1中,y是x的一次函数.
故选项B符合题意;
∵y=2是常数函数,
∴选项C不符合题意;
∵y=x2+1不符合一次函数的形式,故不是一次函数,
∴选项D不符合题意;
综上,y是x的一次函数的是选项B.
故选:B.
【点睛】
本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
10、A
【解析】
【分析】
作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
【详解】
解:如图,作点A关于x轴的对称点,则PA=,
∴≤(当P、、B共线时取等号),
连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
设直线的函数表达式为y=kx+b,
将(1,-1)、B(2,-3)代入,得:
,解得:,
∴y=-2x+1,
当y=0时,由0=-2x+1得:x=,
∴点P坐标为(,0),
故选:A
【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
二、填空题
1、11
【解析】
【分析】
经过观察4组自变量和相应的函数值,,符合解析式,不符合,即可判定.
【详解】
解:,,符合解析式,不符合,
这个计算有误的函数值是10,
则它的正确值是11,
故答案为:11.
【点睛】
本题考查了一次函数图象上点的坐标特征,解题的关键是掌握图象上点的坐标符合解析式.
2、32023
【解析】
【分析】
先利用等边三角形的性质求得P点坐标为(,3),再求得直线的解析式为y=x+,设P1点坐标为(x,x+),利用含30度角的直角三角形的性质求得P1点的纵坐标为9=32,找出规律,即可求解.
【详解】
解:过点P作PD⊥轴于点D,
∵等边△OAP,且A点坐标为(2,0),
∴OA= OP=2,OD=DA=,∠POD=60°,
∴PD=3,
∴P点坐标为(,3),
∵直线y=kx+(k>0)经过点P,
∴3=k+,
解得:k=,
∴直线的解析式为y=x+,
过点P1作PE⊥轴于点E,
设P1点坐标为(x,x+),
∴AE=x-2,P1E=x+,
∵∠P1AE=60°,∠AP1E=30°,
∴P1E=AE,
∴x+=(x-2),
解得:x=5,
∴P1点的纵坐标为9=32,
同理,P2点的纵坐标为27=33,
,
∴点P2022的纵坐标为32023.
故答案为:32023.
【点睛】
本题是有关点的坐标的规律题,考查了待定系数法求直线的解析式,等边三角形的性质,勾股定理等,利用数形结合的思想解决问题,与含30度角的直角三角形相结合,使问题得以解决.
3、 上升 增大 一、二、三 一、三、四 下降 减小 一、二、四 二、三、四
【解析】
略
4、 一次 任意实数
【解析】
略
5、或且
【解析】
【分析】
设BC与y轴交于点M,根据题意可得E点不在AD边上,即,分两种情况进行讨论:①如果,那么点E在AB边或线段BM上;②如果,那么点E在CD边或线段CM上;对两种情况的临界情况进行分析即可得出结果.
【详解】
解:如图,设BC与y轴交于点M,
,,,
∴E点不在AD边上,
;
①如果,那么点E在AB边或线段BM上,
当点E在AB边且时,
由勾股定理得,,
,
,,
当直线经过点,时,.
,
,
当点E在线段BM上时,,
,符合题意;
②如果,那么点E在CD边或线段CM上,
当点E在CD边且时,E与D重合;
当时,由勾股定理得,,
,
,此时E与C重合,
当直线经过点时,.
当点E在线段CM上时,,
且,符合题意;
综上,当时,的取值范围是或且,
故答案为:或且.
【点睛】
题目主要考查正比例函数的综合问题,包括其性质及分类讨论思想,勾股定理解三角形等,理解题意,熟练掌握运用分类思想是解题关键.
三、解答题
1、 (1)甲种奖品的单价为20元/件,乙种奖品的单价为10元/件;
(2)当学习购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【解析】
【分析】
(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,根据“购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w,由甲种奖品的数量不少于乙种奖品数量的一半,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于m的函数关系式,利用一次函数的性质即可解决最值问题.
(1)
设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,
依题意,得:,
解得,
答:甲种奖品的单价为20元/件,乙种奖品的单价为10元/件.
(2)
设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w元,
∵甲种奖品的数量不少于乙种奖品数量的一半,
∴m≥(60-m),
∴m≥20.
依题意,得:w=20m+10(60-m)=10m+600,
∵10>0,
∴w随m值的增大而增大,
∴当学校购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的一次函数关系式.
2、 (1)y=2x+3
(2)S△BOC=
【解析】
【分析】
(1)根据点A、B的坐标利用待定系数法即可求出一次函数的解析式;
(2)利用直线解析式求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.
(1)
解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).
∴,解得:,
∴这个一次函数的解析式为:y=2x+3.
(2)
解:令y=0,则2x+3=0,解得x=﹣,
∴C(﹣,0),
∵B(0,3).
∴S△BOC==.
【点睛】
本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.
3、 (1)k=;
(2)−1<k<,且k≠0.
【解析】
【分析】
(1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;
(2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.
(1)
解:设OA的中点为M,
∵O(0,0),A(4,0),
∴OA=4,
∴OM=2,
∴M(2,0),
∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,
∴,
解得:k=;
(2)
如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,
当一次函数y=kx+b的图象过B、P两点时,
代入表达式y=kx+b得到:,
解得:k=-1,
当一次函数y=kx+b的图象过A、P两点时,
代入表达式y=kx+b得到:,
解得:k=,
所以−1<k<,
由于要满足一次函数的存在性,
所以−1<k<,且k≠0.
【点睛】
本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
4、 (1)点E,点F;
(2)()或();
(3)b的取值范围1<b<2或2<b<3.
【解析】
【分析】
(1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
(2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移的性质可求BR解析式为,联立方程组,解方程组即可;
(3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
(1)
解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
∴△ABE为直角三角形,且AE大于AB;
以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,
∴点E与点F是AB关联点,
点G不在A、B两点垂直的直线上,故不能构成直角三角形,
故答案为点E,点F;
(2)
解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
∴△AOB为等腰直角三角形,AB=
∴∠ABO=∠BAO=45°,
以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
∴∠OAS=90°-∠BAO=45°,
∴△AOS为等腰直角三角形,
∴OS=OA=1,点S(1,0),
设AS解析式为代入坐标得:
,
解得,
AS解析式为,
∴,
解得,
点P(),
AP=,AP>AB
以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
∴∠OBR=90°-∠ABO=45°,
∴△OBR为等腰直角三角形,
∴OR=OB=1,点R(0,-1),
过点R与AS平行的直线为AS直线向下平移2个单位,
则BR解析式为,
∴,
解得,
点P1(),
AP1=>,
∴点P为线段AB的关联点,点P的坐标为()或();
(3)
解:过点A与AB垂直的直线交直线y=2x+2于U,
把△AOB绕点A顺时针旋转90°,得△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(-1,b-1)在直线上,
∴
∴,
∴当b>1时存在两个“关联点”,
当b<1时,UA<AB,不满足定义,没有两个“关联点”
当过点A的直线与直线平行时没有 “关联点”
与x轴交点X(-1,0),与y轴交点W(0,2)
∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
∴△OXW顺时针旋转90°,得到△OAB,
∴OB=OW=2,
∴在1<b<2时,直线上存在两个AB的“关联点”,
当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(1,1+b)在直线上,
∴
∴解得
∴当2<b<3时, 直线上存在两个AB的“关联点”,
当b>3时,UA<AB,不满足定义,没有两个“关联点”
综合得,b的取值范围1<b<2或2<b<3.
【点睛】
本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
5、 (1)k=2;
(2)7;
(3)≤m≤3
【解析】
【分析】
(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;
(2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;
(3)先求得点P的纵坐标,根据题意列不等式组求解即可.
(1)
解:令x=0,则y=2;
∴B (0,2),
∴OB=2,
∵AB=;
∴OA=1,
∴A (-1,0),
把B (-1,0)代入y=kx+2得:0=-k+2,
∴k=2;
(2)
解:∵直线l2平行于直线y=−2x.
∴设直线l2的解析式为y=−2x+b.
把(2,2)代入得2=−22+b,
解得:b=6,
∴直线l2的解析式为.
令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),
由(1)得直线l1的解析式为.
解方程组得:,
∴N (1,4),
四边形OCNB的面积=S△ODC- S△NBD
=
=7;
(3)
解:∵点P的横坐标为m,
∴点P的纵坐标为,
∴PM=,
∵PM≤3,且点P在线段CD上,
∴≤3,且m≤3.
解得:≤m≤3.
【点睛】
本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.
相关试卷
这是一份初中数学第二十一章 一次函数综合与测试当堂检测题,共23页。试卷主要包含了如图,已知点K为直线l等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共25页。试卷主要包含了已知一次函数y=,当时,直线与直线的交点在等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题,共28页。试卷主要包含了已知点,已知一次函数y=,若直线y=kx+b经过一等内容,欢迎下载使用。