搜索
    上传资料 赚现金
    英语朗读宝

    2022年冀教版八年级数学下册第二十一章一次函数定向测试试卷(含答案详解)

    2022年冀教版八年级数学下册第二十一章一次函数定向测试试卷(含答案详解)第1页
    2022年冀教版八年级数学下册第二十一章一次函数定向测试试卷(含答案详解)第2页
    2022年冀教版八年级数学下册第二十一章一次函数定向测试试卷(含答案详解)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题,共27页。试卷主要包含了已知一次函数y=kx+b,若点等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为(  )
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    ﹣1
    0
    1
    2
    3

    y2

    ﹣5
    ﹣3
    ﹣1
    1
    3

    A. B. C. D.
    2、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )

    A.乙比甲提前出发1h B.甲行驶的速度为40km/h
    C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
    3、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是(  )

    A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=4
    4、如图,在平面直角坐标系中,,,,点D在线段BA上,点E在线段BA的延长线上,并且满足,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为( )

    A. B. C. D.
    5、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )
    A. B. C. D.
    6、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是(  )
    A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣1
    7、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )

    A. B.
    C. D.
    8、点和点都在直线上,则与的大小关系为( )
    A. B. C. D.
    9、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )
    A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
    10、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
    A. B. C. D.不能确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一次函y=kx+b(k≠0)的图象可以由直线y=kx平移______个单位长度得到(当b>0时,向______平移;当b<0时,向______平移).
    2、将一次函数向上平移5个单位长度后得到直线AB,则平移后直线AB对应的函数表达式为______.
    3、将直线向上平移个单位后,经过点,若,则___.
    4、如图,在平面直角坐标系中,点A,A1,A2,…在x轴上,分别以OA,AA1,A1A2,…为边在第一象限作等边△OAP,等边△AA1P1,等边△A1A2P2,…,且A点坐标为(2,0),直线y=kx+(k>0)经过点P,P1,P2,…,则点P2022的纵坐标为______.

    5、如图,直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P,若点P(1,n),则方程组的解是_____.

    三、解答题(5小题,每小题10分,共计50分)
    1、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.
    (1)若,请写出与的函数关系式.
    (2)若,请写出与的函数关系式.
    (3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?
    2、一次函数y=kx+b,当-3≤x≤1时,对应的y的取值为1≤y≤9,求该函数的解析式.
    3、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.
    (1)求今年每套A型、B型一体机的价格各是多少万元?
    (2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?
    4、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.

    (1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.
    (2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;
    (3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.
    5、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:

    A种产品
    B种产品
    成本价(元/件)
    400
    300
    销售价(元/件)
    560
    450
    (1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?
    (2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.
    【详解】
    解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),
    ∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),
    ∴关于x,y的二元一次方程组的解为.
    故选:C.
    【点睛】
    本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.
    2、C
    【解析】
    【分析】
    根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
    B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
    C、乙行驶的速度为
    ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
    D、;

    ∴0.75h或1.125h时,乙比甲多行驶10km,
    ∴选项D说法正确,不符合题意.
    故选C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
    3、C
    【解析】
    【分析】
    点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.
    【详解】
    解: 点K为直线l:y=2x+4上一点,设
    将点K向下平移2个单位,再向左平移a个单位至点K1,

    将点K1向上平移b个单位,向右平1个单位至点K2,

    点K2也恰好落在直线l上,

    整理得:
    故选C
    【点睛】
    本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.
    4、A
    【解析】
    【分析】
    过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,求出直线AB、AC的解析式,设出点D、E、M的坐标,根据△DGM≌△MFE,建立方程求解即可.
    【详解】
    解:过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,
    设直线AB的解析式为,把,代入得,
    ,解得,,
    ∴AB的解析式为,
    同理可求直线AC的解析式为,
    设点D坐标为,点M坐标为,
    ∵,

    ∵,,
    ∴点E是由点D向右平移3个单位,向上平移9个单位得到的,则点E坐标为,
    ∵∠EFM=∠DGM=∠DME
    ∴∠FEM+∠FME=∠DMG+∠FME =90°,
    ∴∠FEM =∠DMG,
    ∵DM=EM,
    ∴△DGM≌△MFE,
    ∴DG=FM,GM=EF,
    根据坐标可列方程组,b-a=3a+18+1.5b-9-1.5b+9-3a-9=b-a-3,
    解得,,
    所以,点M坐标为,
    故选:A.

    【点睛】
    本题考查了求一次函数解析式和全等三角形的判定与性质,解题关键是求出直线解析式,设出点的坐标,利用全等三角形建立方程.
    5、C
    【解析】
    【分析】
    根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.
    【详解】
    解:函数的图象与函数的图象互相平行,
    ∴,
    ∴,
    当时,,选项A不在直线上;
    当时,,选项B不在直线上;
    当时,y=6-3=3,选项C在直线上;
    当时,,选项D不在直线上;
    故选:C.
    【点睛】
    题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.
    6、D
    【解析】
    【分析】
    根据题意和一次函数的性质,可以解答本题.
    【详解】
    解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,
    ∴b=-1,k>0,
    故选:D.
    【点睛】
    本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    7、C
    【解析】
    【分析】
    由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
    【详解】
    解:令直线中,得到,故,
    令直线中,得到,故,
    由勾股定理可知:,
    ∵,且,
    ∴,,
    过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:

    ∵为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    同理,∵为等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    设直线CD的解析式为:y=kx+b,代入和,
    得到:,解得,
    ∴CD的解析式为:,
    与直线联立方程组,
    解得,故E点坐标为,
    故选:C.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
    8、B
    【解析】
    【分析】
    根据 ,可得 随 的增大而减小,即可求解.
    【详解】
    解:∵ ,
    ∴ 随 的增大而减小,
    ∵ ,
    ∴ .
    故选:B
    【点睛】
    本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.
    9、A
    【解析】
    【分析】
    根据一次函数的性质得出y随x的增大而减小,进而求解.
    【详解】
    由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,
    ∵-3<2,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.
    10、C
    【解析】
    【分析】
    利用一次函数的增减性性质判定即可.
    【详解】
    ∵直线y=-2x+3的k=-2<0,
    ∴y随x的增大而减小,
    ∵-2<3,
    ∴,
    故选C.
    【点睛】
    本题考查了一次函数的增减性,熟练掌握性质是解题的关键.
    二、填空题
    1、 上 下
    【解析】

    2、y=x+7
    【解析】
    【分析】
    直接根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,把直线y=x+2向上平移5个单位长度后所得直线的解析式为:y=x+2+5,即y=x+7.
    ∴直线AB对应的函数表达式为y=x+7.
    故答案为:y=x+7.
    【点睛】
    本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
    3、3
    【解析】
    【分析】
    根据直线平移的规律得到平移后的函数解析式,将点代入即可.
    【详解】
    解:将直线向上平移个单位后得到的直线解析式为,
    点在平移后的直线上,



    故答案为:3.
    【点睛】
    此题考查了一次函数平移的规律:左加右减,上加下减,熟记规律是解题的关键.
    4、32023
    【解析】
    【分析】
    先利用等边三角形的性质求得P点坐标为(,3),再求得直线的解析式为y=x+,设P1点坐标为(x,x+),利用含30度角的直角三角形的性质求得P1点的纵坐标为9=32,找出规律,即可求解.
    【详解】
    解:过点P作PD⊥轴于点D,
    ∵等边△OAP,且A点坐标为(2,0),
    ∴OA= OP=2,OD=DA=,∠POD=60°,
    ∴PD=3,
    ∴P点坐标为(,3),
    ∵直线y=kx+(k>0)经过点P,
    ∴3=k+,
    解得:k=,
    ∴直线的解析式为y=x+,
    过点P1作PE⊥轴于点E,
    设P1点坐标为(x,x+),
    ∴AE=x-2,P1E=x+,
    ∵∠P1AE=60°,∠AP1E=30°,
    ∴P1E=AE,
    ∴x+=(x-2),
    解得:x=5,
    ∴P1点的纵坐标为9=32,
    同理,P2点的纵坐标为27=33,

    ∴点P2022的纵坐标为32023.
    故答案为:32023.

    【点睛】
    本题是有关点的坐标的规律题,考查了待定系数法求直线的解析式,等边三角形的性质,勾股定理等,利用数形结合的思想解决问题,与含30度角的直角三角形相结合,使问题得以解决.
    5、
    【解析】
    【分析】
    由两条直线的交点坐标P(1,n),先求出n,再求出方程组的解即可.
    【详解】
    解:∵y=﹣x+4经过P(1,n),
    ∴n=-1+4=3,
    ∴n=3,
    ∴直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P(1,3),
    ∴,
    故答案为.
    【点睛】
    本题考查了一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.
    三、解答题
    1、 (1)
    (2)
    (3)13吨
    【解析】
    【分析】
    (1)当0<x≤8时,根据水费=用水量×1.5,即可求出y与x的函数关系式;
    (2)当x>8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y与x的函数关系式;
    (3)当0<x≤8时,y≤12,由此可知这个月该户用水量超过8吨,将y=23代入(2)中所求的关系式,求出x的值即可.
    (1)
    根据题意可知:
    当时,;
    (2)
    根据题意可知:
    当时,;
    (3)
    当时,,
    的最大值为(元,,
    该户当月用水超过8吨.
    令中,则,
    解得:.
    答:这个月该户用了13吨水.
    【点睛】
    本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.
    2、函数的解析式为y=2x+7或y=-2x+3
    【解析】
    【分析】
    分类讨论:由于一次函数是递增或递减函数,所以当一次函数y=kx+b为增函数时,则x=-3,y=1;x=1,y=9,当一次函数y=kx+b为减函数时,则x=-3,y=9;x=1,y=1,然后把它们分别代入y=kx+b中得到方程组,再解两个方程组即可.
    【详解】
    解:当x=-3,y=1;x=1,y=9,
    ∴,
    解方程组得;
    当x=-3,y=9;x=1,y=1,
    ∴,
    解方程组得,
    ∴函数的解析式为y=2x+7或y=-2x+3.
    【点睛】
    本题考查了待定系数法求一次函数解析式:先设一次函数的解析式为y=kx+b,然后把一次函数图象上两点的坐标代入得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了分类讨论思想的运用.
    3、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元
    (2)1800万
    【解析】
    【分析】
    (1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;
    (2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.
    (1)
    设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,
    由题意得:,
    解得:
    答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;
    (2)
    设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,
    由题意可得:1.8(1100-m)≥1.2(1+25%)m,
    解得:m≤600,
    设明年需投入W万元,
    W=1.2×(1+25%)m+1.8(1100-m)
    =-0.3m+1980,
    ∵-0.3<0,
    ∴W随m的增大而减小,
    ∵m≤600,
    ∴当m=600时,W有最小值-0.3×600+1980=1800,
    故该市明年至少需投入1800万元才能完成采购计划.
    【点睛】
    本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.
    4、 (1)P(0,1);△POC的面积与△AOB的面积的比值为;
    (2)y=﹣2x+2;
    (3)线段PC所在直线的解析式为:y=4x﹣4或y=x+
    【解析】
    【分析】
    (1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;
    (2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;
    (3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.
    (1)
    解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,
    ∴A(2,0),B(0,2),
    ∴OA=OB=2,
    ∴∠OAB=∠OBA=45°,
    ∴.
    当线段PC与线段AB平行时,可画出图形,

    设PC所在直线的解析式为y=﹣x+m,
    ∵C(1,0),
    ∴﹣1+m=0,解得,m=1,
    ∴PC所在直线的解析式为:y=﹣x+1,
    ∴P(0,1);
    此时,,
    ∴.
    即P(0,1);△POC的面积与△AOB的面积的比值为;
    (2)
    解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B重合,此时P(0,2),
    设PC所在直线的解析式为:y=kx+b,
    ∴,解得,,
    ∴线段PC所在直线的解析式为:y=﹣2x+2.
    (3)
    解:根据题意,需要分类讨论:
    ①当点P在线段AB上时,如图所示,此时,

    过点P作PD⊥x轴于点D,
    ∴,解得:,
    ∴AD=PD=,
    ∴OD=OA﹣AD=2﹣=,
    ∴P(,),
    设线段PC所在直线的解析式:y=k1x+b1,
    ∴,解得,,
    ∴线段PC所在直线的解析式:y=4x﹣4;
    ②当点P在线段OB上时,如图所示,此时,

    ∴,解得,,
    ∴P(0,),
    设线段PC所在直线的解析式:y=k2x+b2,
    ∴,解得,,
    ∴线段PC所在直线的解析式:y=x+;
    综上可知,线段PC所在直线的解析式为:y=4x﹣4或y=x+.
    【点睛】
    本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键.
    5、 (1)A种产品生产400件,B种产品生产200件
    (2)A种产品生产1000件时,利润最大为460000元
    【解析】
    【分析】
    (1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;
    (2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.
    (1)
    解:设A种产品生产x件,则B种产品生产(600-x)件,
    由题意得:,
    解得:x=400,
    600-x=200,
    答:A种产品生产400件,B种产品生产200件.
    (2)
    解:设A种产品生产x件,总利润为w元,由题意得:

    由,
    得:,
    因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.
    【点睛】
    本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.

    相关试卷

    数学八年级下册第二十一章 一次函数综合与测试课后复习题:

    这是一份数学八年级下册第二十一章 一次函数综合与测试课后复习题,共25页。试卷主要包含了点A,若实数等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试习题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试习题,共23页。试卷主要包含了一次函数y=mx﹣n等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试课后复习题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后复习题,共26页。试卷主要包含了如图,已知点K为直线l,,两地相距80km,甲等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map