![2022年必考点解析冀教版八年级数学下册第二十一章一次函数章节练习试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12765042/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版八年级数学下册第二十一章一次函数章节练习试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12765042/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版八年级数学下册第二十一章一次函数章节练习试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12765042/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十一章 一次函数综合与测试同步练习题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共29页。试卷主要包含了当时,直线与直线的交点在等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、巴中某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为( )
①15分钟后,甲仓库内快件数量为180件;
②乙仓库每分钟派送快件数量为8件;
③8:00时,甲仓库内快件数为400件;
④7:20时,两仓库快递件数相同.
A.1个 B.2个 C.3个 D.4个
2、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).
A.快艇的速度比可疑船只的速度快0.3海里/分
B.5分钟时快艇和可疑船只的距离为3.5海里
C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶
D.当快艇出发分钟后追上可疑船只,此时离海岸海里
3、如图,一次函数y=f(x)的图像经过点(2,0),如果y>0,那么对应的x的取值范围是( )
A.x2 C.x0
4、已知点,都在直线上,则与的大小关系为( )
A. B. C. D.无法比较
5、关于一次函数 ,下列说法不正确的是( )
A.图象经过点(2,0) B.图象经过第三象限
C.函数y随自变量x的增大而减小 D.当x≥2时,y≤0
6、把函数y=x的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )
A.(2,2) B.(2,3) C.(2,4) D.(2,5)
7、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )
A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
8、当时,直线与直线的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )
A. B. C. D.
10、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、己知y是关于x的一次函数,下表给出的4组自变量x的值及其对应的函数y的值,其中只有一个y的值计算有误,则它的正确值是_______.
x
0
1
2
3
y
20
17
14
10
2、如图,已知函数和的图象交于点,则根据图象可得,二元一次方程组的解是_______.
3、已知直线y=kx+b(k≠0)的图像与直线y=-2x平行,且经过点(2,3),则该直线的函数表达式为______________________.
4、如图,一次函数y=2x和y=ax+5的图象交于点A(m,3),则不等式ax+5<2x的解集是 _____.
5、有下列函数:①y=2x+1;②y=-3x+4;③ y=0.5x;④y=x-6
(1)其中过原点的直线是________;
(2)函数y随x的增大而增大的是_______;
(3)函数y随x的增大而减小的________;
(4)图象在第一、二、三象限的________ .
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知直线y=﹣x+3与x轴、y轴分别相交于点A、B,将△AOB沿直线CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.
(1)点A的坐标为 ,点B的坐标为 ;
(2)求OC的长度,并求出此时直线BC的表达式;
(3)过点B作直线BP与x轴交于点P,且使OP=OA,求△ABP的面积.
2、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
(1)则点A的坐标为_______,点B的坐标为______;
(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
②试求线段OQ长的最小值.
3、已知A,B两地相距的路程为12km,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OCD和线段EF,分别表示甲、乙两人与A地的路程y甲、y乙与他们所行时间x(h)之间的函数关系,且OC与EF相交于点P.
(1)求y乙与x的函数关系式以及两人相遇地点P与A地的路程;
(2)求线段OC对应的y甲与x的函数关系式;
(3)求经过多少h,甲、乙两人相距的路程为6km.
4、【数学阅读】
如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小明的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
【推广延伸】
如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.
【解决问题】
如图4,在平面直角坐标系中,点C在x轴正半轴上,点B在y轴正半轴上,且AB=AC.点B到x轴的距离为3.
(1)点B的坐标为_____________;
(2)点P为射线CB上一点,过点P作PE⊥AC于E,点P到AB的距离为d,直接写出PE与d的数量关系_______________________________;
(3)在(2)的条件下,当d=1,A为(-4,0)时,求点P的坐标.
5、已知一次函数在轴上的截距为2,且随的增大而减小,求一次函数的解析式,并求出它的图像与坐标轴围成的三角形的面积
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据图象可知15分钟后,甲仓库内快件数量为130件,据此可得甲仓库揽收快件的速度,进而得出时,甲仓库内快件数;由图象可知45分钟,乙仓库派送快件数量为180件,可得乙仓库每分钟派送快件的数量,进而得出乙仓库快件的总数量,然后根据题意列方程即可求出两仓库快递件数相同是时间.
【详解】
解:由题意结合图象可知:
15分钟后,甲仓库内快件数量为130件,故①说法错误;
甲仓库揽收快件的速度为:(件分),
所以时,甲仓库内快件数为:(件,故③说法正确;
(分,
即45分钟乙仓库派送快件数量为180件,
所以乙仓库每分钟派送快件的数量为:(件,故②说法错误;
所以乙仓库快件的总数量为:(件,
设分钟后,两仓库快递件数相同,根据题意得:
,
解得,
即时,两仓库快递件数相同,故④说法正确.
所以说法正确的有③④共2个.
故选:B.
【点睛】
本题考查了一次函数的应用,解题的关键是结合图象,理解图象中点的坐标代表的意义.
2、C
【解析】
【分析】
根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.
【详解】
解:快艇的速度为,可疑船只的速度为(海里/分),
∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;
5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;
由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;
设快艇出发t分钟后追上可疑船只,,解得t=,
这时离海岸海里,故D选项不符合题意;
故选:C.
【点睛】
此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.
3、A
【解析】
【分析】
y>0即是图象在x轴上方,找出这部分图象上点对应的横坐标范围即可.
【详解】
解:∵一次函数y=f(x)的图象经过点(2,0),
∴如果y>0,则x<2,
故选:A.
【点睛】
本题考查一次函数的图象,数形结合是解题的关键.
4、A
【解析】
【分析】
根据一次函数的增减性分析,即可得到答案.
【详解】
∵直线上,y随着x的增大而减小
又∵
∴
故选:A.
【点睛】
本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.
5、B
【解析】
【分析】
当 时, ,可得图象经过点(2,0);再由 ,可得图象经过第一、二、四象限;函数y随自变量x的增大而减小;然后根据 时, ,可得当x≥2时,y≤0,即可求解.
【详解】
解:当 时, ,
∴图象经过点(2,0),故A正确,不符合题意;
∵ ,
∴图象经过第一、二、四象限,故B错误,符合题意;
∴函数y随自变量x的增大而减小,故C正确,不符合题意;
当 时, ,
∴当x≥2时,y≤0,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
6、C
【解析】
【分析】
由函数“上加下减”的原则解题.
【详解】
解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,
当x=2时,y=2+2=4,
所以在平移后的函数图象上的是(2,4),
故选:C.
【点睛】
本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.
7、B
【解析】
【分析】
根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
【详解】
解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
(5x+5×x)÷5=x(m/min),
∵公司位于家正西方500米,
∴(−10−2)×x=500+(5+2.5)x,
解得x=200,
∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
爸爸到达公司时,丁丁距离商店路程为:
3500-(−12)×(300+200)=m.
综上,正确的选项为B.
故选:B.
【点睛】
本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
8、B
【解析】
【分析】
根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
【详解】
解:一次函数中,,
∴函数图象经过一二四象限
∵在一次函数中,,
∴直线经过一二三象限
函数图象如图
∴直线与的交点在第二象限
故选:.
【点睛】
本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
9、D
【解析】
【分析】
先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.
【详解】
解: 一次函数,其中y的值随x值的增大而减小,
当时,则 解得,故A不符合题意,
当时,则 解得 故B不符合题意;
当时,则 解得 故C不符合题意;
当时,则 解得 故D符合题意;
故选D
【点睛】
本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.
10、C
【解析】
【分析】
根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.
【详解】
解:函数的图象与函数的图象互相平行,
∴,
∴,
当时,,选项A不在直线上;
当时,,选项B不在直线上;
当时,y=6-3=3,选项C在直线上;
当时,,选项D不在直线上;
故选:C.
【点睛】
题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.
二、填空题
1、11
【解析】
【分析】
经过观察4组自变量和相应的函数值,,符合解析式,不符合,即可判定.
【详解】
解:,,符合解析式,不符合,
这个计算有误的函数值是10,
则它的正确值是11,
故答案为:11.
【点睛】
本题考查了一次函数图象上点的坐标特征,解题的关键是掌握图象上点的坐标符合解析式.
2、
【解析】
【分析】
根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.
【详解】
解:由图像可知二元一次方程组的解是,
故答案为:
【点睛】
本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.
3、
【解析】
【分析】
由两个一次函数的图象平行求解 再把(2,3)代入函数的解析式求解即可.
【详解】
解: 直线y=kx+b(k≠0)的图像与直线y=-2x平行,
把点(2,3)代入中,
解得:
所以一次函数的解析式为:
故答案为:
【点睛】
本题考查的是利用待定系数法求解二次函数的解析式,掌握“两直线平行,两个一次函数的比例系数相等,而不相等”是解本题的关键.
4、##
【解析】
【分析】
把点A(m,3)代入y=2x求解的值,再利用的图象在的图象的上方可得答案.
【详解】
解: 一次函数y=2x和y=ax+5的图象交于点A(m,3),
不等式ax+5<2x的解集是
故答案为:
【点睛】
本题考查的是根据一次函数的交点坐标确定不等式的解集,理解一次函数的图象的性质是解本题的关键.
5、 ③ ①③④ ② ①
【解析】
略
三、解答题
1、 (1)(4,0),(0,3)
(2),y=﹣x+3
(3)3或9
【解析】
【分析】
(1)令x=0和y=0即可求出点A,B的坐标;
(2)连接BC,设OC=x,则AC=BC=4﹣x,在Rt△BOC中,利用勾股定理求出x,再利用待定系数法求出直线BC的解析式即可;
(3)先求出点P的坐标,根据三角形的面积公式即可求解.
(1)
解:令y=0,则x=4;令x=0,则y=3,
故点A的坐标为(4,0),点B的坐标为(0,3).
故答案为:(4,0),(0,3);
(2)
解:如图所示,连接BC,
设OC=x,
∵直线CD垂直平分线段AB,
∴AC=CB=4﹣x,
∵∠BOA=90°,
∴OB2+OC2=CB2,
32+x2=(4﹣x)2,
解得,
∴,
∴C(,0),
设直线BC的解析式为y=kx+b,
则有,
解得,
∴直线BC的解析式为y=﹣x+3;
(3)
解:如图,
∵点A的坐标为(4,0),
∴OA=4,
∵OP=OA,
∴OP=2,
∴点P的坐标为(2,0),P′(﹣2,0),
∴AP=2,AP′=6,
∴S△ABP=AP•OB=×2×3=3
S△ABP′=AP′•OB=×6×3=9,
综上:△ABP的面积为3或9.
【点睛】
本题考查了一次函数,勾股定理,解题的关键是掌握一次函数的性质.
2、 (1)(-3,0);(0,4)
(2)证明见解析
(3)①∠QPO,∠BAQ;②线段OQ长的最小值为
【解析】
【分析】
(1)根据题意令x=0,y=0求一次函数与坐标轴的交点;
(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;
(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.
(1)
解:在y=x+4中,令y=0,得0=x+4,
解得x=﹣3,
∴A(﹣3,0),
在y=x+4中,令x=0,得y=4,
∴B(0,4);
故答案为:(﹣3,0),(0,4).
(2)
证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,
∵PB=PE,
∴∠PBE=∠PEB=α,
∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),
∴∠BPE=2∠OAB.
(3)
解:①结论:∠QPO,∠BAQ
理由:如图3中,∵∠APQ=∠BPE=2∠OAB,
∵∠BPE=2∠OAB,
∴∠APQ=∠BPE.
∴∠APQ﹣∠APB=∠BPE﹣∠APB.
∴∠QPO=∠EPA.
又∵PE=PB,AP=PQ
∴∠PEB=∠PBE=∠PAQ=∠AQP.
∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.
∴与∠EPA相等的角有∠QPO,∠BAQ.
故答案为:∠QPO,∠BAQ.
②如图3中,连接BQ交x轴于T.
∵AP=PQ,PE=PB,∠APQ=∠BPE,
∴∠APE=∠QPB,
在△APE和△QPB中,,
∴△APE≌△QPB(SAS),
∴∠AEP=∠QBP,
∵∠AEP=∠EBP,
∴∠ABO=∠QBP,
∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,
∴∠BAO=∠BTO,
∴BA=BT,
∵BO⊥AT,
∴OA=OT,
∴直线BT的解析式为为:,
∴点Q在直线y=﹣x+4上运动,
∵B(0,4),T(3,0).
∴BT=5.
当OQ⊥BT时,OQ最小.
∵S△BOT=×3×4=×5×OQ.
∴OQ=.
∴线段OQ长的最小值为.
【点睛】
本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.
3、 (1),9km
(2)
(3)经过小时或1小时,甲、乙两人相距6km.
【解析】
【分析】
(1)根据题意和函数图象中的数据,可以得到y乙与x的函数关系式以及两人相遇地点与A地的距离;
(2)根据函数图象中的数据,可以计算出线段OP对应的y甲与x的函数关系式;
(3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km.
(1)
解:设y乙与x的函数关系式是,
∵点E(0,12),F(2,0)在函数y乙=kx+b的图象上,
∴ ,解得 ,
即y乙与x的函数关系式是,
当x=0.5时,,
即两人相遇地点P与A地的距离是9km;
(2)
解:设线段OC对应的y甲与x的函数关系式是y甲=ax,
∵点(0.5,9)在函数y甲=ax的图象上,
∴9=0.5a, 解得a=18,
即线段OP对应的y甲与x的函数关系式是y甲=18x;
(3)
解:①令 即
或
解得:或
甲从A地到达B地的时间为:小时,
经检验:不符合题意,舍去,
②当甲到达B地时,乙离B地6千米所走时间为:
(小时),
综上所述,经过小时或1小时,甲、乙两人相距6km.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论.
4、推广延伸:PD=PE+CF,证明见解析;
解决问题:(1)(0,3);(2)PE=3+d或PE=3-d;(3)或
【解析】
【分析】
推广延伸:连接AP,由△ABP与△ACP面积之差等于△ABC的面积可以证得三线段间的关系;
解决问题:
(1)由点B到x轴的距离及点B在y轴正半轴上即可得到点B的坐标;
(2)分两种情况:当点P在CB延长线上时,由推广延伸的结论即可得PE与d的关系;当点P在线段CB上时,由阅读材料中的结论可得PE与d的关系;
(3)由点A的坐标及AB=AC可求得点C的坐标,从而可求得直线CB的解析式;分两种情况:点P在CB延长线上及当点P在线段CB上,由(2)中结论即可求得点P的纵坐标,从而由点P在直线CB上即可求得点P的横坐标,从而得到点P的坐标.
【详解】
推广延伸:猜想:PD=PE+CF
证明如下:
连接AP,如图3
∵
即
∴AB=AC
∴PD-CF=PE
∴PD=PE+CF
解决问题:
(1)∵点B在y轴正半轴上,点B到x轴的距离为3
∴B(0,3)
故答案为:(0,3)
(2)当点P在CB延长线上时,如图
由推广延伸的结论有:PE=OB+PF=3+d;
当点P在线段CB上时,如图
由阅读材料中的结论可得PE=OB-PF=3-d;
故答案为:PE=3+d或PE=3-d
(3)∵A(-4,0),B(0,3)
∴OA=4,OB=3
由勾股定理得:
∴AC=AB=5
∴OC=AC-OA=5-4=1
∴C(1,0)
设直线CB的解析式为y=kx+b(k≠0)
把C、B的坐标分别代入得:
解得:
即直线CB的解析式为y=-3x+3
由(2)的结论知:PE=3+1=4或PE=3-1=2
∵点P在射线CB上
∴点P的纵坐标为正,即点P的纵坐标为4或2
当y=4时,-3x+3=4,解得:,即点P的坐标为;
当y=2时,-3x+3=2,解得:,即点P的坐标为
综上:点P的坐标为或
【点睛】
本题是材料阅读题,考查了等腰三角形的性质及一次函数的图象与性质,读懂材料的内容并能灵活运用于新的情境中是本题的关键.
5、y=-2x+2;1
【解析】
【分析】
根据截距为2,且y随x的增大而减小即可确定k值,求出解析式即可求出面积.
【详解】
解:∵一次函数y=kx+k2-2在y轴上的截距为2,
∴|k2-2|=2,
即k=±2或k'=0,
又∵y随x的增大而减小,
∴k<0,
即k=-2,
∴一次函数解析式为y=-2x+2;
作出函数图象如图,
设坐标轴原点为O,函数图象与x轴交于点B,与y轴交于点A,
由解析式可知A(0,2),B(1,0),
∴OA=2,OB=1,
∴S△AOB=OA•OB=×2×1=1.
【点睛】
本题主要考查一次函数的知识,熟练掌握一次函数基本知识是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时作业,共26页。
这是一份数学八年级下册第二十一章 一次函数综合与测试课后测评,共31页。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共32页。试卷主要包含了已知一次函数y=,已知点,都在直线上,则,已知正比例函数的图像经过点等内容,欢迎下载使用。