初中数学冀教版八年级下册第二十一章 一次函数综合与测试课堂检测
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课堂检测,共31页。试卷主要包含了若一次函数,,两地相距80km,甲,已知一次函数y=等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B.
C. D.
2、一次函数的大致图象是( )
A. B.
C. D.
3、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )
A.甲队的挖掘速度大于乙队的挖掘速度
B.开挖2h时,甲、乙两队所挖的河渠的长度相差8m
C.乙队在的时段,与之间的关系式为
D.开挖4h时,甲、乙两队所挖的河渠的长度相等
4、无论m为何实数.直线与的交点不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )
x(单位:台)
10
20
30
y(单位:万元/台)
60
55
50
A.y=80- 2x B.y=40+ 2x
C.y=65- D.y=60-
6、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
A.且 B.且
C.且 D.且
7、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
8、下列各点在函数y=﹣3x+2图象上的是( )
A.(0,﹣2) B.(1,﹣1) C.(﹣1,﹣1) D.(﹣,1)
9、已知一次函数y=(1﹣3k)x+k的函数值y随x的增大而增大,且图象经过第一、二、三象限,则k的值( )
A.k>0 B.k<0 C.0<k< D.k<
10、下列各点中,不在一次函数的图象上的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、己知y是关于x的一次函数,下表给出的4组自变量x的值及其对应的函数y的值,其中只有一个y的值计算有误,则它的正确值是_______.
x
0
1
2
3
y
20
17
14
10
2、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.
3、若一次函数y=2x+b的图象经过A(-1,1)则b=____,该函数图象经过点B(1,__)和点C(___,0).
4、当k>0时,直线y=kx经过第一、第三象限,从左向右______,即随着x的增大y也增大;当k<0时,直线y=kx经过第二、第四象限,从左向右______,即随着x的增大y反而减小.
5、已知:直线与直线的图象交点如图所示,则方程组的解为______.
三、解答题(5小题,每小题10分,共计50分)
1、请用已学过的方法研究一类新函数y=k|x﹣b|(k,b为常数,且k≠0)的图象和性质:
(1)完成表格,并在给出的平面直角坐标系中画出函数y=|x﹣2|的图象;
x
﹣2
﹣1
0
1
2
3
4
5
6
y
4
2
1
0
1
2
4
(2)点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上.
①若y1=y2,则m的值为 ;
②若y1<y2,则m的取值范围是 ;
(3)结合函数图像,写出该函数的一条性质.
2、已知一次函数y1=ax+b,y2=bx+a(ab≠0,且a≠b).
(1)若y1过点(1,2)与点(2,b﹣a﹣3)求y1的函数表达式;
(2)y1与y2的图象交于点A(m,n),用含a,b的代数式表示n;
(3)设y3=y1﹣y2,y4=y2﹣y1,当y3>y4时,求x的取值范围.
3、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为 ;
(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.
4、如图,在平面角坐标系中,点B在y轴的负半轴上(0,﹣2),过原点的直线OC与直线AB交于C,∠COA=∠OCA=∠OBA=30°
(1)点C坐标为 ,OC= ,△BOC的面积为 ,= ;
(2)点C关于x轴的对称点C′的坐标为 ;
(3)过O点作OE⊥OC交AB于E点,则△OAE的形状为 ,请说明理由;
(4)在坐标平面内是否存在点F使△AOF和△AOB全等,若存在,请直接写出F坐标,请说明理由.
5、经开区某中学计划举行一次知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于乙种奖品的一半,应如何购买才能使总费用最少?并求出最少费用.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
【详解】
解:作AD∥x轴,作CD⊥AD于点D,如图所示,
由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
∵AD∥x轴,
∴∠DAO+∠AOB=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中
,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
【点睛】
本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
2、A
【解析】
【分析】
由知直线必过,据此求解可得.
【详解】
解:,
当时,,
则直线必过,
如图满足条件的大致图象是:
故选:A.
【点睛】
本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当,时,图象过一、二、三象限;②当,时,图象过一、三、四象限;③当,时,图象过一、二、四象限;④当,时,图象过二、三、四象限.
3、D
【解析】
【分析】
根据图象依次分析判断.
【详解】
解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;
开挖2h时,乙队所挖的河渠的长度为30m,
甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,
开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;
由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;
甲队开挖4h时,所挖河渠的长度为,
乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;
故选:D.
【点睛】
此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.
4、C
【解析】
【分析】
根据一次函数的图象与系数的关系即可得出结论.
【详解】
解:∵一次函数y=-x+4中,k=-11;
(3)见解析
【解析】
【分析】
(1)列表、描点,连线画出函数图象即可;
(2)观察图形,根据图象的性质即可得到结论;
(3)结合(2)中图象的性质,即可得到结论.
(1)
解:列表:
x
﹣2
﹣1
0
1
2
3
4
5
6
y
4
3
2
1
0
1
2
3
4
描点、连线,画出函数y=|x﹣2|图象如图:
(2)
解:点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上,
观察图象:y=|x﹣2|图象关于直线x=2对称,且当x>2时,y随x增大而增大,当xm,
①若y1=y2,则m+2-2=2-m,解得m=1;
②若y1<y2,则m>1,
故答案为:1,m>1;
(3)
解:对于函数y=k|x−b|,当k>0时,函数值y先随x的增大而减小,函数值为0后,再随x的增大而增大.
【点睛】
本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,数形结合解题是关键.
2、 (1)y1=﹣x+3
(2)n=a+b
(3)当a>b时,x>1;当a<b时,x<1
【解析】
【分析】
(1)把(1,2)、(2,b-a-3)分别代入y1=ax+b得到a、b的方程组,然后解方程组得到y1的函数表达式;
(2)把A(m,n)分别代入y1=ax+b和y2=bx+a中得到am+b=nbm+a=n,先利用加减消元法求出m,然后得到n与a、b的关系式;
(3)先用a、b表示y3和y4,利用y3>y4得到(a-b)x+b-a>(b-a)x+a-b,然后解不等式即可.
(1)
解:把(1,2)、(2,b﹣a﹣3)分别代入y1=ax+b得
,
解得,
∴y1的函数表达式为y1=﹣x+3;
(2)
解:∵y1与y2的图象交于点A(m,n),
∴am+b=nbm+a=n,
∴m=1,n=a+b;
(3)
解:y3=y1﹣y2=ax+b﹣(bx+a)=(a﹣b)x+b﹣a,
y4=y2﹣y1=bx+a﹣(ax+b)=(b﹣a)x+a﹣b,
∵y3>y4,
∴(a﹣b)x+b﹣a>(b﹣a)x+a﹣b,
整理得(a﹣b)x>a﹣b,
当a>b时,x>1;
当a<b时,x<1.
【点睛】
本题考查了待定系数法求一次函数解析式:设一次函数解析式为y=kx+b(k≠0),再把两组对应量代入,然后解关于k,b的二元一次方程组.从而得到一次函数解析式.也考查了一次函数的性质.
3、 (1)(,3)或(4,3)
(2)45°
(3)y=-x+
【解析】
【分析】
(1)是直角三角形,分两种情况:①,,轴,进而得出点坐标;②,,如图过点Q作,垂足为C,在中,由勾股定理知,设,在中,由勾股定理知,在中,由勾股定理知,有,求解x的值,即的长,进而得出点坐标;
(2)如图,点P翻折后落在线段AB上的点E处,由翻折性质和可得,,,,点E是AB的中点,过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H, 可证,求出EF的值,的值,有,用证明,知,,进而可求的值;
(3)如图,由旋转的性质可知,,证,可知,,过点A作AG⊥BQ于G,设,则,在中,,由勾股定理得,解得的值,进而求出点的坐标,设过点的直线解析式为,将两点坐标代入求解即可求得解析式.
(1)
解:∵是直角三角形,点,点
∴①当时,
∵轴
∴点坐标为;
②当时,,如图过点Q作,垂足为C
在中,由勾股定理知
设,在中,由勾股定理知
在中,由勾股定理知
∴
解得
∴
∴
∴点坐标为;
综上所述,点坐标为或.
(2)
解:如图,点P翻折后落在线段AB上的点E处,
则
又∵
∴
∴
∴
∴
∴点E是AB的中点
过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,
在和中
∵∠AEM=∠BEF∠EMA=∠EFBAE=BE
∴
∴
∴EF=
∵
∴
在和中
∵
∴
∴
∴
∴.
(3)
解:如图
由旋转的性质可知
∵
∴
在和中
∠P'QA=∠PAQAQ=QA∠P'AQ=∠PQA
∴
∴
∴
过点A作AG⊥BQ于G
设
∴
在中,,由勾股定理得
解得
∴
∴点的坐标分别为
设过点的直线解析式为
将两点坐标代入得
解得:
∴过点的直线解析式为.
【点睛】
本题考查了翻折的性质,三角形全等,勾股定理,一次函数等知识.解题的关键在于将知识灵活综合运用.
4、 (1)(3,),2,3,
(2)(3,)
(3)等边三角形,见解析
(4)存在,(0,)或(0,﹣)或(2,)或(2,﹣).
【解析】
【分析】
(1)先根据等角对等边,确定OB=OC=,再通过构造垂线法,分别求出相关线段的长,根据点所在象限,确定点的坐标;根据面积公式,选择适当的底边计算即可;利用同底的两个三角形面积之比等于对应高之比计算即可;
(2)根据点关于x轴对称的特点,直接写出坐标即可;
(3)根据三个角是60°的三角形是等边三角形判定即可;
(4)利用全等三角形的判定定理,综合运用分类思想求解.
(1)
解:(1)∵点B(0,﹣2),
∴OB=,
∵∠COA=∠OCA=∠OBA=30°,
∴OB=OC=,
过点C作CD⊥x轴于点D,
∴CD==,DO==3,
∵点C在第一象限;
∴C(3,),
∴=;
∴,
故答案为:(3,),2,3,.
(2)
∵C(3,),点C与点C'关于x轴对称,
∴C'(3,﹣).
故答案为:(3,﹣).
(3)
∵OE⊥OC,
∴∠COE=90°,
∵∠COA=30°,
∴∠AOE=60°,
∵∠OAE=60°,
∴∠AOE=∠OAB=60°,
∴△OAE是等边三角形,
故答案为:等边三角形.
(4)
解:①如图1,当△AOB≌△AOF时,
∵OB=,
∴OF=,
∴(0,),(0,﹣),
②如图2,当△AOB≌OAF时,
设直线AB的解析式为y=kx+b,
∴,
解得,
∴直线AB的解析式为y=x,
令y=0,得x=2,
∴点A的坐标为(2,0),
∵△AOB≌OAF,
∴OB=AF=,
∴F3(2,),F4(2,﹣),
综上所述,存在点F,且点F的坐标是(0,)或(0,﹣)或(2,)或(2,﹣).
【点睛】
本题考查了等角对等边,坐标与象限,勾股定理,点的对称,函数解析式,等边三角形的判定,三角形全等的判定,分类思想,熟练掌握待定系数法,灵活运用三角形全等的判定是解题的关键.
5、 (1)甲种奖品的单价为20元/件,乙种奖品的单价为10元/件;
(2)当学习购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【解析】
【分析】
(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,根据“购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w,由甲种奖品的数量不少于乙种奖品数量的一半,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于m的函数关系式,利用一次函数的性质即可解决最值问题.
(1)
设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,
依题意,得:,
解得,
答:甲种奖品的单价为20元/件,乙种奖品的单价为10元/件.
(2)
设购买甲种奖品m件,则购买乙种奖品(60-m)件,设购买两种奖品的总费用为w元,
∵甲种奖品的数量不少于乙种奖品数量的一半,
∴m≥(60-m),
∴m≥20.
依题意,得:w=20m+10(60-m)=10m+600,
∵10>0,
∴w随m值的增大而增大,
∴当学校购买20件甲种奖品、40件乙种奖品时,总费用最少,最少费用是800元.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的一次函数关系式.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共26页。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共29页。试卷主要包含了下列函数中,属于正比例函数的是,如图所示,直线分别与轴等内容,欢迎下载使用。
这是一份八年级下册第二十一章 一次函数综合与测试课时练习,共28页。试卷主要包含了如图所示,直线分别与轴,一次函数y=mx﹣n等内容,欢迎下载使用。