2020-2021学年第二十一章 一次函数综合与测试同步测试题
展开
这是一份2020-2021学年第二十一章 一次函数综合与测试同步测试题,共23页。试卷主要包含了一次函数的图象不经过的象限是,一次函数的图象一定经过等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )A.①② B.①③ C.②④ D.①②④2、如图,已知点是一次函数上的一个点,则下列判断正确的是( )A. B.y随x的增大而增大C.当时, D.关于x的方程的解是3、关于一次函数,下列结论不正确的是( )A.图象与直线平行B.图象与轴的交点坐标是C.随自变量的增大而减小D.图象经过第二、三、四象限4、一次函数的图象不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、如图,直线y=kx+b与x轴的交点的坐标是(﹣3,0),那么关于x的不等式kx+b>0的解集是( )A.x>﹣3 B.x<﹣3 C.x>0 D.x<06、一次函数y=2x﹣5的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )A. B. C. D.8、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-9、一次函数的图象一定经过( )A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限10、某网店销售一款市场上畅销的护眼台灯,在销售过程中发现,这款护眼台灯销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.则y与x的函数关系式为( )A.y=﹣2x+100 B.y=﹣2x+40 C.y=﹣2x+220 D.y=﹣2x+60第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数(m为常数),若其图象经过第一、三、四象限,则m的取值范围为____.2、一次函数y=kx+b(k≠0)的图象是_______.3、已知函数y=kx的图像经过二、四象限,且不经过,请写出一个符合条件的函数解析式______.4、直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为_____.5、当k>0时,直线y=kx经过第一、第三象限,从左向右______,即随着x的增大y也增大;当k<0时,直线y=kx经过第二、第四象限,从左向右______,即随着x的增大y反而减小.三、解答题(5小题,每小题10分,共计50分)1、如图1,一个正立方体铁块放置在圆柱形水槽内,水槽的底面圆的面积记为,正立方体的底面正方形的面积记为.现以一定的速度往水槽中注水,28秒时注满水槽.此时停止注水,并立刻将立方体铁块用细线竖直匀速上拉直至全部拉出水面.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.(1)正立方体的棱长为______cm,______;(2)当圆柱形水槽内水面高度为12cm时,求注水时间是几秒?(3)铁块完全拉出时,水面高度为______cm.2、对于平面直角坐标系xOy中的图形M和点P,给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(﹣4,3),B(4,3).(1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是 ;(2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;(3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>2,请直接写出b的取值范围.3、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送168箱小鸡到A,B两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车8090小货车4060(1)试求这18辆车中大、小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往4村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式,并直接写出自变量取值范围;(3)在(2)的条件下,若运往A村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.4、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为 km;(2)两车经过 h相遇;(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.5、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)直接写出A型桌椅每套 元,B型桌椅每套 元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.①求y与x之间的函数关系,并直接写出x的取值范围;②求出总费用最少的购置方案. -参考答案-一、单选题1、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由题意可得:甲步行的速度为(米分);由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,故①结论正确;∴乙步行的速度为米/分,故②结论正确;乙走完全程的时间(分),乙到达终点时,甲离终点距离是:(米),故③结论错误;设9分到23分钟这个时刻的函数关系式为,则把点代入得:,解得:,∴,设23分钟到30分钟这个时间的函数解析式为,把点代入得:,解得:,∴,把分别代入可得:或,故④错误;故正确的结论有①②.故选:A.【点睛】本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.2、D【解析】【分析】根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D【详解】A.该一次函数经过一、二、四象限 , y随x的增大而减小,故A,B不正确;C. 如图,设一次函数与轴交于点则当时,,故C不正确D. 将点坐标代入解析式,得关于x的方程的解是故D选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.3、D【解析】【分析】根据一次函数的性质对A、C、D进行判断;根据一次函数图象上点的坐标特征对D进行判断,,随的增大而增大,函数从左到右上升;,随的增大而减小,函数从左到右下降.由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴.【详解】解:A、函数的图象与直线平行,故本选项说法正确;B、把代入,所以它的图象与轴的交点坐标是,故本选项说法正确;C、,所以随自变量的增大而减小,故本选项说法正确;D、,,函数图象经过第一、二、四象限,故本选项说法不正确;故选:D.【点睛】本题考查了一次函数的性质,以及k对自变量和因变量间的关系的影响,熟练掌握k的取值对函数的影响是解决本题的关键.4、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数的图象经过第一、二、四象限,此题得解.【详解】解:∵k=-2<0,b=1>0,∴一次函数y=-2x+1的图象经过第一、二、四象限,∴一次函数y=-2x+1的图象不经过第三象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.5、A【解析】【分析】根据图象直接解答即可.【详解】∵直线y=kx+b与x轴交点坐标为(﹣3,0),∴由图象可知,当x>﹣3时,y>0,∴不等式kx+b>0的解集是x>﹣3.故选:A.【点睛】此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.6、B【解析】【分析】由直线的解析式得到k>0,b<0,利用一次函数的性质即可确定直线经过的象限.【详解】解:∵y=2x-5,∴k>0,b<0,故直线经过第一、三、四象限.不经过第二象限.故选:B.【点睛】此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.7、A【解析】【分析】作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.【详解】解:如图,作点A关于x轴的对称点,则PA=,∴≤(当P、、B共线时取等号),连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),设直线的函数表达式为y=kx+b,将(1,-1)、B(2,-3)代入,得:,解得:,∴y=-2x+1,当y=0时,由0=-2x+1得:x=,∴点P坐标为(,0),故选:A【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.8、C【解析】略9、C【解析】【分析】k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限.【详解】解:∵k=-2<0,b=-3<0,∴函数的图象经过第二、三、四象限,故选:C.【点睛】本题考查了一次函数的性质,k>0,函数一定经过第一,三象限,k<0,函数一定经过第二,四象限,再根据直线与y轴的交点即可得出函数所过的象限,这是解题的关键.10、C【解析】【分析】根据单价为60元时,每星期卖出100个,每涨价1元,每星期少卖出2个,列出关系式即可.【详解】解:∵单价为60元时,每星期卖出100个.销售单价,每涨价1元,少卖出2个,∴设销售单价为x元,则涨价(x-60)元,每星期少卖出2(x-60)个.,∴y=100−2(x-60)=-2x+220,故选C.【点睛】此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.二、填空题1、【解析】【分析】根据一次函数的性质列出关于m的不等式组求解.【详解】解:由一次函数的图象经过第一、三、四象限,∴,解得,m>.故答案为:.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2、一条直线【解析】略3、(不唯一)【解析】【分析】将(-2,2)代入y=kx中,求得k=-1,只要符合条件的函数解析式中的k≠-1即可.【详解】解:将(-2,2)代入y=kx中,得:2=-2k,解得:k=-1,∴符合符合条件的函数解析式可以为y=-2x,答案不唯一,故答案为:y=-2x(不唯一).【点睛】本题考查正比例函数的图象与性质,熟练掌握正比例函数的图象上点的坐标特征是解答的关键.4、x≥1【解析】【分析】将P(a,2)代入直线l1:y=x+1中求出a=1,然后再根据图像越在上方,其对应的函数值越大即可求解.【详解】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,在P点右侧时,直线l1:y=x+1在直线l2:y=mx+n的上方,即当x≥1时,x+1≥mx+n,故答案为:x≥1.【点睛】本题考查了一元一次不等式与一次函数的关系,图像越在上方,其对应的函数值就越大.5、 上升 下降【解析】略三、解答题1、 (1)10,4(2)15.2秒(3)17.5【解析】【分析】(1)由 12秒和20秒水槽内水面的高度可求正立方体的棱长;设注水的速度为xcm3/s,圆柱的底面积为scm2,得到关于x、s的二元一次方程组,可得到水槽的底面面积,即可求解;(2)根据A(12、10)、B(28、20)求出线段AB的解析式,把y=12代入解析式,即可求解;(3)根据水槽内水面的高度下降得体积为正立方体的体积,求出水槽内水面的高度下降,即可得答案.(1)解:由图2得: ∵12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,∴正立方体的棱长为10cm;由图2可知,圆柱体一半注满水需要28-12=16 (秒),故如果将正方体铁块取出,又经过16-12=4 (秒)恰好将水槽注满,正方体的体积是103=1000cm3,设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:,解得:∴水槽的底面面积为400cm2,∵正立方体的棱长为10cm,∴正立方体的底面正方形的面积=10×10=100 cm2,∴S1:S2=400:100=4:1(2)设线段AB的解析式为y=kx+b(k≠0),将A(12、10)、B(28、20)代入得:,解得:∴y=x+,当y=12时,x+b=12,解得:x=15.2,∴注水时间是15.2秒;(3)∵正立方体的铁块全部拉出水面,水槽内水面的高度下降,设正立方体的铁块全部拉出水面,水槽内水面的高度下降acm,根据题意得:400a=1000,a=2.5,所以铁块完全拉出时,水面高度为20-2.5=17.5cm.【点睛】本题考查了正立方体的体积、圆柱的体积、一次函数的应用,做题的关键是利用函数的图象获取正确信息是解题的关键.2、 (1)P1,P3(2)0≤t≤4(3)3≤b<5或﹣5<b≤﹣3【解析】【分析】(1)作出直线AB图象,根据到直线的距离即可得出结论;(2)设出点P的坐标,根据和谐点的定义找出临界值即可求出t的取值范围;(3)根据图象找出临界值,再根据对称性写全取值范围即可.(1)解:作AB图象如图,P2到AB的距离为3不符合和谐点条件,P1、P3点到直线AB的距离在0~2之间,符合和谐点的条件,故直线AB的和谐点为P1,P3;故答案为:P1,P3;(2)解:∵点P为直线y=x+1上一点,∴设P点坐标为(t,t+1),寻找直线上的点,使该点到AB垂线段的距离为2,∴|t+1-3|=2,解得t=0或t'=4,∴0≤t≤4;(3)解:如图当b=5时,图中线段EF上的点都是矩形ABCD的和谐点,且EF=2,当b=3时,线段E'F'上的点都是矩形ABCD的和谐点,E'F'>2,∴3≤b<5,由对称性同法可知﹣5<b≤﹣3也满足条件,故3≤b<5或﹣5<b≤﹣3..【点睛】本题主要考查一次函数的知识,弄清新定义是解题的关键.3、 (1)大货车用12辆,小货车用6辆(2)(4≤x≤12,且x为整数)(3)8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元【解析】【分析】(1)设大货车用a辆,小货车用b辆,根据大、小两种货车共18辆,运输168箱小鸡,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.(1)设大货车用a辆,小货车用b辆,根据题意得:解得:.∴大货车用12辆,小货车用6辆.(2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,y=80x+90(12-x)+40(10-x)+60[6-(10-x)]=10x+1240.4≤x≤12,且x为整数.(4≤x≤12,且x为整数)(3)由题意得:10x+8(10-x)≥96,解得:x≥8,又∵4≤x≤12,∴8≤x≤12且为整数,∵y=10x+1240,k=10>0,y随x的增大而增大,∴当x=8时,y最小,最小值为y=10×8+1240=1320(元).答:使总运费最少的调配方案是:8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,理解题意列出方程组、关系式、不等式是解题的关键.4、 (1)900(2)4(3)快车的速度为150km/h,慢车的速度为75km/h(4)y=225x﹣900,自变量x的取值范围是4≤x≤6【解析】【分析】(1)由函数图象可以直接求出甲乙两地之间的距离;(2)由函数图象的数据就即可得出;(3)由函数图象的数据,根据速度=路程÷时间就可以得出慢车的速度,由相遇问题求出速度和就可以求出快车的速度进而得出结论;(4)由快车的速度求出快车走完全程的时间就可以求出点C的横坐标,由两车的距离=速度和×时间就可以求出C点的纵坐标,由待定系数法就可以求出结论.(1)根据图象,得甲、乙两地之间的距为900km.故答案为:900;(2)由函数图象,当慢车行驶4h时,慢车和快车相遇.故答案为:4;(3)由题意,得快车与慢车的速度和为:900÷4=225(km/h),慢车的速度为:900÷12=75(km/h),快车的速度为:225﹣75=150 (km/h).答:快车的速度为150km/h,慢车的速度为75km/h;(4)由题意,得快车走完全程的时间按为:900÷150=6(h),6h时两车之间的距离为:225×(6﹣4)=450km.则C(6,450).设线段BC的解析式为y=kx+b,由题意,得,解得:,则y=225x﹣900,自变量x的取值范围是4≤x≤6.【点睛】本题考查了一次函数的应用,根据函数图像获取信息是解题的关键.5、 (1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:,解得:,所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,∵A型桌椅不少于12套,B型桌椅不少于6套,∴,解得:12≤x≤14,所以y与x之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);②由①知y=-200x+16200,且-200<0,∴y随x的增大而减小,∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共23页。试卷主要包含了巴中某快递公司每天上午7等内容,欢迎下载使用。
这是一份初中冀教版第二十一章 一次函数综合与测试随堂练习题,共24页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课时作业,共29页。试卷主要包含了已知P1等内容,欢迎下载使用。