初中冀教版第二十一章 一次函数综合与测试练习
展开
这是一份初中冀教版第二十一章 一次函数综合与测试练习,共28页。试卷主要包含了若一次函数的图像经过第一,已知点等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)2、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )A.甲队的挖掘速度大于乙队的挖掘速度B.开挖2h时,甲、乙两队所挖的河渠的长度相差8mC.乙队在的时段,与之间的关系式为D.开挖4h时,甲、乙两队所挖的河渠的长度相等3、已知点,在一次函数y=-2x-b的图像上,则m与n的大小关系是( )A.m>n B.m=n C.m<n D.无法确定4、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-5、已知点,在一次函数的图像上,则m与n的大小关系是( )A. B. C. D.无法确定6、在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是( )A. B.C. D.7、若一次函数的图像经过第一、三、四象限,则的值可能为( )A.-2 B.-1 C.0 D.28、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1,y2的大小关系是( )A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定9、已知点和点在一次函数的图象上,且,下列四个选项中k的值可能是( )A.-3 B.-1 C.1 D.310、下列不能表示是的函数的是( )A.05101533.544.5B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有下列函数:①y=2x+1;②y=-3x+4;③ y=0.5x;④y=x-6(1)其中过原点的直线是________;(2)函数y随x的增大而增大的是_______;(3)函数y随x的增大而减小的________;(4)图象在第一、二、三象限的________ .2、函数和的图象相交于点,则方程的解为______.3、用待定系数法确定一次函数表达式所需要的步骤是什么?①设——设函数表达式y=___,②代——将点的坐标代入y=kx+b中,列出关于___、___的方程③求——解方程,求k、b④写——把求出的k、b值代回到表达式中即可.4、如图,直线y=-x+2与y=kx+b(k≠0且k,b为常数)的交点坐标为(3,-1),则关于x的不等式kx+b≥-x+2的解集为 ___.5、如图,已知函数和的图象交于点,则根据图象可得,二元一次方程组的解是_______.三、解答题(5小题,每小题10分,共计50分)1、如图1,在平面直角坐标系中,直线分别与轴、轴交于、两点,直线分别与轴、轴交于、两点,点是上一点.(1)求、的值;(2)试判断线段与线段之间的关系,并说明理由;(3)如图2,若点是轴上一点,点是直线上一动点,点是直线上一动点,当是以点为直角顶点的等腰三角形时,请直接写出相应的点、的坐标.2、如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于点、,经过点的直线交轴于点.(1)求点的坐标;(2)动点在射线上运动,过点作轴,垂足为点,交直线于点,设点的横坐标为.线段的长为.求关于的函数解析式,并直接写出自变量的取值范围;(3)在(2)的条件下,当点在线段上时,连接,若,在线段上取一点.连接,使,问在轴上是否存在点,使是以为直角的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.3、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为 km;(2)两车经过 h相遇;(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.4、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;(2)求甲、乙两人在途中相遇的时间.5、直线,与直线相交于点.(1)求直线的解析式;(2)横、纵坐标都是整数的点叫做整点.记直线与直线和轴围成的区域内(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内的整点恰好为2个,结合函数图象,求的取值范围. -参考答案-一、单选题1、B【解析】【分析】根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.【详解】解:根据题意得,菜园三边长度的和为24m,即,所以,由y>0得,,解得,当时,即,解得,∴,故选:B.【点睛】题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.2、D【解析】【分析】根据图象依次分析判断.【详解】解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;开挖2h时,乙队所挖的河渠的长度为30m,甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;甲队开挖4h时,所挖河渠的长度为,乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;故选:D.【点睛】此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.3、A【解析】【分析】由k=−2<0,利用一次函数的性质可得出y随x的增大而减小,结合<可得出m>n.【详解】解:∵k=−2<0,∴y随x的增大而减小,又∵点A(,m),B(,n)在一次函数y=−2x+1的图象上,且<,∴m>n.故选:A.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.4、C【解析】略5、A【解析】【分析】根据一次函数的性质,y随x增大而减小判断即可.【详解】解:知点,在一次函数的图像上,∵-2<0,∴y随x增大而减小,∵,∴,故选:A.【点睛】本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.6、A【解析】略7、D【解析】【分析】利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,∴m-1>0,∴m>1,∴m的值可能为2.故选:D.【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0⇔y=kx+b的图象经过一、三、四象限”是解题的关键.8、A【解析】【分析】根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:∵一次函数y=3x+a的一次项系数为3>0,∴y随x的增大而增大,∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,∴y1<y2,故选:A.【点睛】本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键.9、A【解析】【分析】由m-1<m+1时,y1>y2,可知y随x增大而减小,则比例系数k+2<0,从而求出k的取值范围.【详解】解:当m-1<m+1时,y1>y2,y随x的增大而减小,∴k+2<0,得k<﹣2.故选:A.【点睛】本题考查一次函数的图象性质:当k<0,y随x增大而减小,难度不大.10、B【解析】【分析】根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.【详解】解:A、根据图表进行分析为一次函数,设函数解析式为:,将,,,分别代入解析式为:,解得:,,所以函数解析式为:,∴y是x的函数;B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;C、D选项从图象及解析式看可得y是x的函数.故选:B.【点睛】题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.二、填空题1、 ③ ①③④ ② ①【解析】略2、【解析】【分析】由题意知,方程的解为其交点的横坐标,进而可得结果.【详解】解:由题意知的解为两直线交点的横坐标故答案为:.【点睛】本题考查了一次函数图象的交点与一次方程解的关系.解题的关键在于理解一次函数图象的交点与一次方程解的关系.3、 kx+b k b【解析】略4、【解析】【分析】根据题意结合函数图象,可得当时,的图象对应的点在函数(且k,b为常数)的图象下面,据此即可得出不等式的解集.【详解】解:从图象得到,当时,的图象对应的点在函数(且k,b为常数)的图象下面,∴不等式的解集为,故答案为:.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,解决此类问题的关键是仔细观察图形,注意几个关键点,做到数形结合.5、【解析】【分析】根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.【详解】解:由图像可知二元一次方程组的解是,故答案为:【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.三、解答题1、 (1)2,1(2)垂直且相等,见解析(3)点、的坐标分别为、或、【解析】【分析】(1)分别求出点A,B的坐标,将点坐标代入求得b,从而得直线BD的解析式,再把点C坐标代入BD解析式,从而求出m的值;(2)分别求出,即可求解;(3)证明△MHQ≌△QGN(AAS),则MH=GQ,NG=QH,即可求解.(1)对于y=2x+2,令x=0,则y=2,令y=0,即y=2x+2=0,解得x=-1,故点A、B的坐标分别为(-1,0)、(0,2),∵直线过点B,将点B坐标代入上式并解得:故b=2,则该直线的表达式为,当x=-3时,=1=m,即点C(-3,1);故答案为:2,1;(2)由(1)知,点A、B、C的坐标分别为(-1,0)、(0,2)、(-3,1),则,同理,,则AB2+AC2=BC2,故∠BAC为直角,且AC=BA故线段CA与线段BA之间的关系为垂直且相等;(3)当△MNQ是以点Q为直角顶点的等腰三角形时,∠MQN=90°,QM=QN,设点M、N的坐标分别为(s,2s+2)、(t,t+2),过点Q作x轴的平行线交过点M与y轴的平行线于点H,交过点N与y轴的平行线于点G,∵∠NQG+∠MQH=90°,∠NQG+∠QNG=90°,∴∠MQH=∠QNG,∵∠MHQ=∠QGN=90°,MQ=NQ,∴△MHQ≌△QGN(AAS),∴MH=GQ,NG=QH,即2s+2-(-1)=-t(或-1-2s-2=-t),s=t+2-(-1)(或-s=t+2+1),解得:或,所以,点、的坐标分别为、或、【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、三角形全等等,其中(3),要注意分类求解,避免遗漏.2、 (1)(2)(3)存在,,【解析】【分析】(1)先由直线分别交轴、轴于点、,求出点、的坐标,再根据直线经过点,求出的值,得到直线的解析式,令,得到关于的一元一次方程,求出的值即为点的横坐标;(2)由轴于点,交直线于点,且点的横坐标为,得,,再按点在轴的左侧及点在轴的右侧分别求出关于的函数解析式及相应的的取值范围即可;(3)连接,设交轴于点,作轴于点,先证明,根据勾股定理及面积等式求出点的坐标,再证明,求出直线的解析式,令,得到关于的一元一次方程,解方程求出的值即为点的横坐标.(1)直线,当时,;当时,则,解得,,,直线经过点,,直线的解析式为,当时,则,解得,(2)轴于点,交直线于点,且点的横坐标为,,,如图1,点在轴的左侧,则,,;如图2,点在轴的右侧,则,,,综上所述,关于的函数解析式为.(3)存在,如图3,连接,交轴于点,,作轴于点,点在线段上,且,,整理得或(不符合题意,舍去),,,点为的中点,,,, ,,,,,,,,,,,,解得,,设直线的解析式为,则,解得,直线的解析式为, 由得,,设直线的解析式为,则,解得,直线的解析式为,,,设直线的解析式为,则,解得,直线的解析式为,当时,则,解得,点的坐标为,.【点睛】此题重点考查一次函数的图象与性质、用待定系数法求函数解析式、用解方程组的方法求函数图象的交点坐标、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识与方法,综合运用以上知识是解题的关键.3、 (1)900(2)4(3)快车的速度为150km/h,慢车的速度为75km/h(4)y=225x﹣900,自变量x的取值范围是4≤x≤6【解析】【分析】(1)由函数图象可以直接求出甲乙两地之间的距离;(2)由函数图象的数据就即可得出;(3)由函数图象的数据,根据速度=路程÷时间就可以得出慢车的速度,由相遇问题求出速度和就可以求出快车的速度进而得出结论;(4)由快车的速度求出快车走完全程的时间就可以求出点C的横坐标,由两车的距离=速度和×时间就可以求出C点的纵坐标,由待定系数法就可以求出结论.(1)根据图象,得甲、乙两地之间的距为900km.故答案为:900;(2)由函数图象,当慢车行驶4h时,慢车和快车相遇.故答案为:4;(3)由题意,得快车与慢车的速度和为:900÷4=225(km/h),慢车的速度为:900÷12=75(km/h),快车的速度为:225﹣75=150 (km/h).答:快车的速度为150km/h,慢车的速度为75km/h;(4)由题意,得快车走完全程的时间按为:900÷150=6(h),6h时两车之间的距离为:225×(6﹣4)=450km.则C(6,450).设线段BC的解析式为y=kx+b,由题意,得,解得:,则y=225x﹣900,自变量x的取值范围是4≤x≤6.【点睛】本题考查了一次函数的应用,根据函数图像获取信息是解题的关键.4、 (1)图象见解析;(2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【解析】【分析】(1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;(2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.(1)乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.(2)根据题意结合图象可知甲、乙两人在途中相遇3次.如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,根据题意可设的解析式为:,∴,解得:,∴的解析式为.∵甲的步行速度为100m/min,他每走半个小时就休息15min,∴甲第一次休息时走了米,对于,当时,即,解得:.故第一次相遇的时间为40分钟的时候;设BC段的解析式为:,根据题意可知B(45,3000),D (75,6000).∴,解得:,故BC段的解析式为:.相遇时即,故有,解得:.故第二次相遇的时间为60分钟的时候;对于,当时,即,解得:.故第三次相遇的时间为80分钟的时候;综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【点睛】本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.5、 (1)直线为;(2)①当时,整点个数为1个,为;②的取值范围为或【解析】【分析】(1)根据待定系数法求得即可;(2)①当k=1时代入点A坐标即可求出直线解析式,进而分析出整点个数;②当k<0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k的值;当k>0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k的值,根据图形即可求得k的取值范围.(1)解:直线过点.,直线为.(2)解:①当时,,把代入得,解得:,,如图1,区域内的整点个数为1个,为.②如图2,若,当直线过,时,.当直线过,时,.,如图3,若,当直线过,时,.当直线过,时,..综上,若区域内的整点恰好为2个,的取值范围为或.【点睛】此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.
相关试卷
这是一份冀教版第二十一章 一次函数综合与测试练习,共27页。试卷主要包含了一次函数的图象一定经过等内容,欢迎下载使用。
这是一份数学第二十一章 一次函数综合与测试随堂练习题,共24页。试卷主要包含了如图所示,直线分别与轴,已知点,都在直线上,则等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共30页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。