初中数学冀教版八年级下册第二十章 函数综合与测试习题
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试习题,共21页。
冀教版八年级数学下册第二十章函数定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、函数的自变量x的取值范围是( )A.x>5 B.x<5 C.x≠5 D.x≥-52、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )A. B.C. D.3、根据如图所示的程序计算函数的值,若输入的值为1,则输出的值为2;若输入的值为,则输出的值为( ).A. B. C.4 D.84、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④5、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示6、汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数.如图描述了、两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )A.消耗1升汽油,车最多可行驶5千米B.车以40千米小时的速度行驶1小时,最少消耗4升汽油C.对于车而言,行驶速度越快越省油D.某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车更省油7、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )A.1个 B.2个 C.3个 D.4个8、下列关系中,一定能称是x的函数的是( )A.y2=4x B.|y|=x-2 C.y=|x|-3 D.y4=64x9、某商场降价销售一批名牌球鞋,已知所获利润y(元)与降价金额x(元)之间满定函数关系式y=﹣x2+50x+600,若降价10元,则获利为( )A.800元 B.600元 C.1200元 D.1000元10、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用函数观点解决实际问题:(1)搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;(2)分清______和______,并注意自变量的______.2、在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是________,y是x的________.3、如图(1),△ABC和是两个腰长不相等的等腰直角三角形,其中,∠A=.点、C'、B、C都在直线l上,△ABC固定不动,将在直线l上自左向右平移,开始时,点与点B重合,当点移动到与点C重合时停止.设△移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图(2)所示,则BC的长是____.4、函数的定义域为__________.5、函数,当自变量时,函数值为______.三、解答题(5小题,每小题10分,共计50分)1、周六王华骑电动车从家出发去张明家,当他骑了一段路时,想起要帮张明买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往张明家,如图是他离家的路程与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)王华家到张明家的路程是多少米?(2)王华在新华书店停留了多长时间?(3)买到书后,王华从新华书店到张明家骑车的平均速度是多少?(4)本次去张明家途中,王华一共行驶了多少米?2、数学家欧拉最先把关于的多项式用记号来表示,例如,并把常数时多项式的值用来表示,例如时多项式的值记为.(1)若规定,①的值是_________;②若,的值是_________;(2)若规定,.①有没有能使成立的的值,若有,求出此时的值,若没有,请说明理由,②直接写出的最小值和此时满足的条件.3、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.4、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)在上升或下降过程中,无人机的速度为多少?(2)图中a表示的数是 ;b表示的数是 ;(3)无人机在空中停留的时间共有 分钟.5、图(a)是某公共汽车线路收支差额(票价总收入减去运营成本)与乘客量的函数图象;目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,从而实现扭亏.公交公司认为:运营成本难以下降,公司已尽力,提高票价才能担亏根据这两种意见,可以把图(a)分别改画成图(b)和图(c).(1)说明图(a)中点和点的实际意义.(2)你认为图(b)和图(c)两个图象中,反映乘客意见的是______,反映公交公司意见的是______. -参考答案-一、单选题1、D【解析】【分析】根据二次根式有意义的条件即可得出答案.【详解】解:∵函数,∴,解得:,故选:D.【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.2、D【解析】【分析】根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当时,,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.3、A【解析】【分析】输入,则有;输入,则有,将代数式的值代入求解即可.【详解】解:输入,则有;输入,则有;故选A.【点睛】本题考查了程序流程图与代数式求值.解题的关键在于正确求解代数式的值.4、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.5、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.6、B【解析】【分析】根据题意和函数图象可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:A、由图象可知,当车速度超过时,燃油效率大于,所以当速度超过时,消耗1升汽油,车行驶距离大于5千米,故此项不合理,不符合题意;B、车以40千米小时的速度行驶1小时,路程为,,最少消耗4升汽油,此项合理,符合题意;C、对于车而言,行驶速度在时,越快越省油,故此项不合理,不符合题意;D、某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车燃油效率更高,所以更省油,故此项不合理,不符合题意.故选:B.【点睛】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答.7、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;由小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A地千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.8、C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数.【详解】解:根据函数概念可得:在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应可得C中y是x的函数,故选:C.【点睛】此题主要考查了函数的概念,关键是掌握函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.9、D【解析】【分析】将代入函数关系式即可得.【详解】解:将代入得:,即获利为1000元,故选:D.【点睛】本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.10、D【解析】【分析】根据速度,时间与路程的关系得出,变形即可.【详解】解:根据速度,时间与路程的关系得∴.故选D.【点睛】本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.二、填空题1、 自变量 函数 取值范围【解析】略2、 自变量 函数【解析】略3、6【解析】【分析】观察函数图象可得,重叠部分的图形均为等腰直角三角形,运动距离为a时函数面积为1,知,求出a的值,再运动4个单位长度,面积保持不变,由此求出的长度,即可得到答案.【详解】解:如图,运动过程中,重叠部分的图形均为等腰直角三角形,图2至图4重叠部分面积不变,都是的值,由题中的函数图象知,.当恰为1时(如图2).设,则,∴a=2,使保持1时,即下图中图2—图4的情形,即图2中的长为4.∴BC的长为6.故答案为:6.【点睛】此题考查了运动问题,函数图象,会看函数图象,根据图形运动结合函数图象得到相关信息由此解决问题是解题的关键.4、故答案为:x1且x-【点睛】本题考查了自变量的取值范围,熟练掌握此函数关系式中分母不为0,被开方数大于等于0是解题的关键.3.且【解析】【分析】由分式与二次根式有意义的条件可得再解不等式组即可得到答案.【详解】解:由题意可得: 由①得: 由②得: 所以函数的定义域为且 故答案为:且【点睛】本题考查的是二次函数的自变量的取值范围,分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式有意义的条件”是解本题的关键.5、【解析】【分析】将函数的自变量的值代入函数解析式计算即可求解.【详解】解:将代入可得,,解得.故答案为:18.【点睛】本题考查了二次函数的定义,解题的关键是将自变量的值代入函数解析式并准确计算.三、解答题1、(1)4800米;(2)8分钟;(3)450米/分;(4)6800米【解析】【分析】(1)根据函数图象,直接可得王华家到张明家的路程;(2)根据函数图像平行于横轴的部分即为停留的时间,据此可得王华在新华书店停留了多长时间;(3)根据函数图象求得路程和时间,概念速度等于路程除以时间即可求得;(4)根据函数图象可得路程为3段,将其相加即可.【详解】解:(1)根据函数图象,可知王华家到张明家的路程是4800米;(2)24﹣16=8(分钟).所以王华在新华书店停留了8分钟;(3)王华从新华书店到张明家的路程为4800﹣3000=1800米,所用时间为28﹣24=4分钟,小王华从新华书店到张明家骑车的平均速度是:1800÷4=450(米/分);(4)根据函数图象,王华一共行驶了4800+2×(4000﹣3000)=6800(米).【点睛】本题考查了函数图象,要理解横纵坐标表示的含义以及王华的运动过程,从函数图象中获取信息是解题的关键.2、 (1)①-5;②5,(2)①有,x=,见解析;②的最小值是5,-3≤x≤2【解析】【分析】(1)①当x=-1时,计算;②计算,求得x即可;(2)①或,解方程即可;②表示动点x到2和-3的距离和,按照x>2,x<-3,-3≤x≤2分别计算比较结果即可.(1)(1)①∵,∴当x=-1时, =-5,∴的值是-5,故答案为:-5;②∵,∴=7,∴x=5,故答案为:5;(2)①有,x=,理由如下:∵,,且,∴,无解;或,解得x=,故当x=时,;②设动点P表示的数为x,点A表示的数是-3,点B表示的数2,则表示数轴上动点P到点A和点B的距离和即PA+PB, 当x>2时,如图所示,PA+PB>AB=2-(-3)=5;当x<-3时,如图所示,PA+PB>AB=2-(-3)=5;当-3≤x≤2时,如图所示,,PA+PB=x+3+2-x=5=AB=2-(-3)=5;故当-3≤x≤2时,有最小值,且为5.【点睛】本题考查了求函数值,自变量的值,解方程,绝对值的化简,数轴上的动点问题,熟练掌握绝对值的化简,数轴上的动点问题是解题的关键.3、(1)PQ=5cm;(2)t=;(3)S四边形APQB=30﹣5t+t2.【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ=,∵t=2,∴PQ=,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=,∴t=秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ===30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.4、(1)无人机的速度为25米/分;(2)2;15;(3)9.【解析】【分析】(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;(2)根据(1)中求得的结果,由路程=速度×时间进行求解即可;(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可.【详解】解:(1)∵无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,∴无人机的速度为75-50=25米/分;(2)由题意得:,,故答案为:2,15;(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,故答案为:9【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像.5、(1)点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)反映乘客意见的是图(c),反映公交公司意见的是图(b).【解析】【分析】(1)读题看图两结合,从中获取信息做出判断.点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)根据题意知图象反映了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的成本情况,再结合图象进行说明.【详解】解:(1)点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)反映乘客意见的是图(c),反映公交公司意见的是图(b).由图(b)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持成本不变,由图(c)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是降低成本而保持票价不变;综上可得图(b)的建议是提高票价,图(c)的建议是降低成本,故反映乘客意见的是图(c),反映公交公司意见的是图(b).【点睛】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,解题关键是掌握读图能力和数形结合思想.
相关试卷
这是一份八年级下册第二十章 函数综合与测试精练,共19页。
这是一份2020-2021学年第二十章 函数综合与测试同步测试题,共21页。试卷主要包含了函数中,自变量x的取值范围是,函数y=的自变量x的取值范围是,如图所示的图象等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试课时练习,共22页。