冀教版八年级下册第二十一章 一次函数综合与测试单元测试课后测评
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试单元测试课后测评,共30页。试卷主要包含了若实数,若一次函数等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )
A.①② B.①③ C.②④ D.①②④
2、当时,直线与直线的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
x
…
﹣2
﹣1
0
1
2
…
y1
…
1
2
3
4
5
…
x
…
﹣2
﹣1
0
1
2
…
y2
…
5
2
﹣1
﹣4
﹣7
…
则关于x的不等式kx+b>mx+n的解集是( )
A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
4、若实数、满足且,则关于的一次函数的图像可能是( )
A. B. C. D.
5、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )
x(单位:台)
10
20
30
y(单位:万元/台)
60
55
50
A.y=80- 2x B.y=40+ 2x
C.y=65- D.y=60-
6、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
A.且 B.且
C.且 D.且
7、如图1,在中,,点是的中点,动点从点出发沿运动到点,设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( ).
A.10 B.12 C. D.
8、下列问题中,两个变量成正比例的是( )
A.圆的面积S与它的半径r
B.三角形面积一定时,某一边a和该边上的高h
C.正方形的周长C与它的边长a
D.周长不变的长方形的长a与宽b
9、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )
A. B.
C. D.
10、点和点都在直线上,则与的大小关系为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知函数和的图象交于点,则根据图象可得,二元一次方程组的解是_______.
2、如图,一次函数y=2x和y=ax+5的图象交于点A(m,3),则不等式ax+5<2x的解集是 _____.
3、已知函数是关于x的一次函数,则______.
4、如图,直线的解析式为,直线的解析式为,为上的一点,且点的坐标为,作直线轴,交直线于点,再作于点,交直线于点,作轴,交直线于点,再作,交直线于点,作轴,交直线于点按此作法继续作下去,则的坐标为________,的坐标为________.
5、一条笔直的公路上顺次有A,B,C三地,甲车从B地出发匀速向C地行驶,同时乙车从B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头将速度提高了50% 向C地行驶,两车到达C地均停止运动.在两车行驶的过程中,甲乙两车之间的距离s(千米)与行驶时间t (小时)之间的函数图象如图所示,当甲乙两车第一次相遇时,距A地的距离为_________ 千米.
三、解答题(5小题,每小题10分,共计50分)
1、已知 A、B 两地相距 3km,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km)与他行驶所用的时间 x(min)之间的关系.根据图像解答下列问题:
(1)甲骑车的速度是 km/min;
(2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y 乙(km)与所用时间 x(min)的关系的大致图像;
(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.
2、对于平面直角坐标系xOy中的图形M和点P,给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(﹣4,3),B(4,3).
(1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是 ;
(2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;
(3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>2,请直接写出b的取值范围.
3、如图,在平面直角坐标系中,直线AB为y=﹣x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).
(1)求点B的坐标及点O到直线AB的距离;
(2)求△ABP的面积(用含n的代数式表示);
(3)当S△ABP=时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.
4、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:
(1)甲、乙两地之间的距离为 km;
(2)两车经过 h相遇;
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
5、已知一次函数,完成下列问题:
(1)求此函数图像与x轴、y轴的交点坐标;
(2)画出此函数的图像:观察图像,当时,x的取值范围是______.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由题意可得:甲步行的速度为(米分);
由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,
故①结论正确;
∴乙步行的速度为米/分,
故②结论正确;
乙走完全程的时间(分),
乙到达终点时,甲离终点距离是:(米),
故③结论错误;
设9分到23分钟这个时刻的函数关系式为,则把点代入得:
,解得:,
∴,
设23分钟到30分钟这个时间的函数解析式为,把点代入得:
,解得:,
∴,
把分别代入可得:或,
故④错误;
故正确的结论有①②.
故选:A.
【点睛】
本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.
2、B
【解析】
【分析】
根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
【详解】
解:一次函数中,,
∴函数图象经过一二四象限
∵在一次函数中,,
∴直线经过一二三象限
函数图象如图
∴直线与的交点在第二象限
故选:.
【点睛】
本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
3、D
【解析】
【分析】
根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
【详解】
解:根据表可得y1=kx+b中y随x的增大而增大;
y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
则当x>﹣1时,kx+b>mx+n.
故选:D.
【点睛】
本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
4、B
【解析】
【分析】
根据实数、满足可知,、互为相反数,再根据,可确定、的符号,进而确定图象的大致位置.
【详解】
解:∴实数、满足,
∴、互为相反数,
∵,
∴,,
∴
∴一次函数的图像经过二、三、四象限,
故选:B.
【点睛】
本题考查了一次函数图象的性质,解题关键是根据已知条件,确定、的符号.
5、C
【解析】
略
6、D
【解析】
【分析】
根据一次函数图象与系数的关系解答即可.
【详解】
解:一次函数、是常数,的图象不经过第三象限,
且,
故选:D.
【点睛】
本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
7、D
【解析】
【分析】
由图像可知, 当时,y与x的函关系为:y=x,当x=8时,y=8,即P与A重合时,的面积为8,据此求出CD,BC,再根据勾股定理求出AB即可P.
【详解】
解:如图2,当时,设y=kx,
将(3,3)代入得,k=1,
,
当P与A重合时,即:PC=AC=8,由图像可知,把x=8代入y=x,y=8,
,
,
,
是BC的中点,
在Rt中,
故选:D.
【点睛】
本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.
8、C
【解析】
【分析】
分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
【详解】
解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
所以正方形的周长C与它的边长a成正比例,故C符合题意;
所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
故选C
【点睛】
本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
9、D
【解析】
【分析】
根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.
【详解】
A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;
D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;
故选:D.
【点睛】
此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
10、B
【解析】
【分析】
根据 ,可得 随 的增大而减小,即可求解.
【详解】
解:∵ ,
∴ 随 的增大而减小,
∵ ,
∴ .
故选:B
【点睛】
本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.
二、填空题
1、
【解析】
【分析】
根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.
【详解】
解:由图像可知二元一次方程组的解是,
故答案为:
【点睛】
本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.
2、##
【解析】
【分析】
把点A(m,3)代入y=2x求解的值,再利用的图象在的图象的上方可得答案.
【详解】
解: 一次函数y=2x和y=ax+5的图象交于点A(m,3),
不等式ax+5<2x的解集是
故答案为:
【点睛】
本题考查的是根据一次函数的交点坐标确定不等式的解集,理解一次函数的图象的性质是解本题的关键.
3、4
【解析】
【分析】
由一次函数的定义可知x的次数为1,即3-m=1,x的系数不为0,即,然后对计算求解即可.
【详解】
解:由题意知
解得(舍去),
故答案为:4.
【点睛】
本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.
4、
【解析】
【分析】
过点 作 轴于点D,点 作 轴于点E,可先求出点 的坐标为 ,从而得到,进而得到 ,得到 ,同理 ,可得到, ,再由轴,可得到 ,再根据等腰三角形的性质可得 ,进而求出 ,同理得到点 ,由此发现规律,即可求解.
【详解】
解:如图,过点 作 轴于点D,点 作 轴于点E,
∵点的坐标为,轴,
∴点 的纵坐标为 ,
∴当时 , ,
∴点 的坐标为 ,
∴OD=3, ,
∴ ,
∴ ,
∴ ,
∵轴,
∴ ,
同理 ,
∴ ,
∴, ,
∵,
∴ ,
∵轴,
∴,
∴,
∴ ,
∵,
∴ ,
∵ ,
∴ ,
∴ ,
∴点 ,
同理点 ,
由此得到 ,
∴的坐标为 .
故答案为: ,
【点睛】
本题主要考查了一次函数的性质,等腰三角形的性质,直角三角形的性质,根据题意得到规律是解题的关键.
5、432
【解析】
【分析】
设甲的速度为v甲,乙的速度为v乙,根据题意可得v甲+v乙=100①,可求出乙追上甲的时间为4.8h,根据题意可得4.8×(1+50%)V乙=2V乙+7.8V甲②,联立①②求出两车的速度即可解答.
【详解】
解:如图:
设甲的速度为v甲,乙的速度为v乙,
OD段:两人的速度和为:200÷2=100(km/h),
即v甲+v乙=100①,
此时乙休息1h,则E处的横坐标为:2+1=3,
则乙用了:7.8-3=4.8(h)追上甲,
则4.8×(1+50%)V乙=2V乙+7.8V甲②,
联立①②得V甲=40,V乙=60,
则第一次相遇是在7.8h时,
距离A地:4.8×(1+50%)×60=432(km).
故答案为:432.
【点睛】
本题主要考查了一次函数的应用.理解函数图象的点的坐标的实际意义,从而得到甲乙两车的行驶的距离和速度是解题的关键.
三、解答题
1、 (1)0.5
(2)见解析
(3)(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km
【解析】
【分析】
(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;
(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;
(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.
(1)
解:甲骑车6min行驶了3km,
∴甲骑车的速度是3÷6=0.5(km/min),
故答案为:0.5;
(2)
解:设乙的速度为x km/min,由题意得
0.5×4-4x=1.2,
∴x=0.2,
又A、B两地相距3km,A、C两地相距1.2km,
∴B、C两地相距1.8km,
∴乙出发后1.8÷0.2=9(min)到达B地,
在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:
(3)
解:由(1)(2)可知,y甲=0.5x,y乙=1.8-0.2x,
由0.5x=1.8-0.2x得x=,
当x=时,y甲=y乙=,
∴两个函数图象的交点坐标为(,),
它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.
【点睛】
本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.
2、 (1)P1,P3
(2)0≤t≤4
(3)3≤b<5或﹣5<b≤﹣3
【解析】
【分析】
(1)作出直线AB图象,根据到直线的距离即可得出结论;
(2)设出点P的坐标,根据和谐点的定义找出临界值即可求出t的取值范围;
(3)根据图象找出临界值,再根据对称性写全取值范围即可.
(1)
解:作AB图象如图,
P2到AB的距离为3不符合和谐点条件,
P1、P3点到直线AB的距离在0~2之间,符合和谐点的条件,
故直线AB的和谐点为P1,P3;
故答案为:P1,P3;
(2)
解:∵点P为直线y=x+1上一点,
∴设P点坐标为(t,t+1),
寻找直线上的点,使该点到AB垂线段的距离为2,
∴|t+1-3|=2,
解得t=0或t'=4,
∴0≤t≤4;
(3)
解:如图当b=5时,图中线段EF上的点都是矩形ABCD的和谐点,且EF=2,
当b=3时,线段E'F'上的点都是矩形ABCD的和谐点,E'F'>2,
∴3≤b<5,
由对称性同法可知﹣5<b≤﹣3也满足条件,
故3≤b<5或﹣5<b≤﹣3.
.
【点睛】
本题主要考查一次函数的知识,弄清新定义是解题的关键.
3、 (1)B(4,0),
(2)
(3)(5,7)或(8,3)或(,)
【解析】
【分析】
(1)求出直线AB的解析式,可求点B坐标,由面积法可求解;
(2)求出点D坐标,由三角形的面积公式可求解;
(3)先计算当S△ABP=时,P的坐标,以PB为边在第一象限作等腰直角三角形BPC,分三种情况讨论:分别以三个顶点为直角顶点画三角形,根据图形可得C的坐标.
(1)
解:∵直线AB为y=x+b交y轴于点A(0,3),
∴b=3,AO=3,
∴直线AB解析式为:y=x+3,
令y=0,则0=x+3,x=4,
∴B(4,0),
∴OB=4,
∴AB==5,
∴S△AOB=×OA×OB=×AB×点O到直线AB的距离,
∴点O到直线AB的距离==;
(2)
∵点D在直线AB上,
∴当x=1时,y=,即点D(1,),
∴PD=n-,
∵OB=4,
∴S△ABP==;
(3)
当S△ABP=时,,解得n=4,
∴点P(1,4),
∵E(1,0),
∴PE=4,BE=3,
第1种情况,如图,当∠CPB=90°,BP=PC时,过点C作CN⊥直线x=1于点N.
∵∠CPB=90°,
∴∠CPN+∠BPE=90°,又∠CPN+∠PCN=90°,
∴∠BPE=∠PCN,
又∵∠CNP=∠PEB=90°,BP=PC,
∴△CNP≌△PEB(AAS),
∴PN=EB=3,PE=CN=4,
∴NE=NP+PE=3+4=7,
∴C(5,7);
第2种情况,如图,当∠PBC=90°,BP=BC时,过点C作CF⊥x轴于点F.
同理可证:△CBF≌△BPE(AAS),
∴CF=BE=3,BF=PE=4,
∴OF=OB+BF=4+4=8,
∴C(8,3);
第3种情况,如图3,当∠PCB=90°,CP=CB时,
过点C作CH⊥BE,垂足为H,过点P作PG⊥CH,垂足为G,
同理可证:△PCG≌△CBH(AAS),
∴CG=BH,PG=CH,
∵PE=4,BE=3,设CG=BH=x,PG=CH=y,
则PE=GH=x+y=4,BE=PG-BH=y-x=3,
解得:x=,y=,
∴C(,),
∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(5,7)或(3,8)或(,).
【点睛】
本题是一次函数综合题,考查了待定系数法,三角形面积公式,全等三角形的判定和性质,利用分类讨论思想解决问题是解题的关键.
4、 (1)900
(2)4
(3)快车的速度为150km/h,慢车的速度为75km/h
(4)y=225x﹣900,自变量x的取值范围是4≤x≤6
【解析】
【分析】
(1)由函数图象可以直接求出甲乙两地之间的距离;
(2)由函数图象的数据就即可得出;
(3)由函数图象的数据,根据速度=路程÷时间就可以得出慢车的速度,由相遇问题求出速度和就可以求出快车的速度进而得出结论;
(4)由快车的速度求出快车走完全程的时间就可以求出点C的横坐标,由两车的距离=速度和×时间就可以求出C点的纵坐标,由待定系数法就可以求出结论.
(1)
根据图象,得
甲、乙两地之间的距为900km.
故答案为:900;
(2)
由函数图象,当慢车行驶4h时,慢车和快车相遇.
故答案为:4;
(3)
由题意,得
快车与慢车的速度和为:900÷4=225(km/h),
慢车的速度为:900÷12=75(km/h),
快车的速度为:225﹣75=150 (km/h).
答:快车的速度为150km/h,慢车的速度为75km/h;
(4)
由题意,得快车走完全程的时间按为:900÷150=6(h),
6h时两车之间的距离为:225×(6﹣4)=450km.
则C(6,450).
设线段BC的解析式为y=kx+b,由题意,得
,
解得:k=225b=900,
则y=225x﹣900,自变量x的取值范围是4≤x≤6.
【点睛】
本题考查了一次函数的应用,根据函数图像获取信息是解题的关键.
5、 (1);
(2)作图见解析;
【解析】
【分析】
(1)分别令,进而即可求得此函数图象与坐标轴的交点坐标;
(2)根据(1)所求得的点的坐标,画出一次函数图象即可,根据图象写出当时,自变量的取值范围即可.
(1)
令,解得,令,解得
则此函数图像与x轴的交点坐标为、与y轴的交点坐标为
(2)
过点;作直线,如图,
根据函数图象可得当时,x的取值范围是:
故答案为:
【点睛】
本题考查了画一次函数图象,一次函数与坐标轴的交点,根据函数图象求自变量的范围,掌握一次函数的图象的性质是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共25页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共35页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共27页。试卷主要包含了已知一次函数y=kx+b,如图,一次函数y=kx+b,已知一次函数y=,已知点,都在直线上,则,若实数等内容,欢迎下载使用。