初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了一次函数的图象不经过的象限是,已知点,都在直线上,则,如图,一次函数y=kx+b等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )
A.甲队的挖掘速度大于乙队的挖掘速度
B.开挖2h时,甲、乙两队所挖的河渠的长度相差8m
C.乙队在的时段,与之间的关系式为
D.开挖4h时,甲、乙两队所挖的河渠的长度相等
2、已知点A的坐标为,点A关于x轴的对称点落在一次函数的图象上,则a的值可以是( )
A. B. C. D.
3、关于一次函数的图像与性质,下列说法中正确的是( )
A.y随x的增大而增大;
B.当 m=3时,该图像与函数的图像是两条平行线;
C.不论m取何值,图像都经过点(2,2) ;
D.不论m取何值,图像都经过第四象限.
4、一次函数的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、如图1,在中,,点是的中点,动点从点出发沿运动到点,设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( ).
A.10 B.12 C. D.
6、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )
A.B.
C. D.
7、已知点,都在直线上,则、大小关系是( )
A. B. C. D.不能计较
8、如图,一次函数y=kx+b(k>0)的图像过点,则不等式的解集是( )
A.x>-3 B.x>-2 C.x>1 D.x>2
9、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )
A. B.
C. D.
10、下列语句是真命题的是( ).A.内错角相等
B.若,则
C.直角三角形中,两锐角和的函数关系是一次函数
D.在中,,那么为直角三角形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为_____.
2、一条笔直的公路上顺次有A,B,C三地,甲车从B地出发匀速向C地行驶,同时乙车从B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头将速度提高了50% 向C地行驶,两车到达C地均停止运动.在两车行驶的过程中,甲乙两车之间的距离s(千米)与行驶时间t (小时)之间的函数图象如图所示,当甲乙两车第一次相遇时,距A地的距离为_________ 千米.
3、在平面直角坐标系xOy中,过点A(5,3)作y轴的平行线,与x轴交于点B,直线y=kx+b(k,b为常数,k≠0)经过点A且与x轴交于点C(9,0).我们称横、纵坐标都是整数的点为整点.
(1)记线段AB,BC,CA围成的区域(不含边界)为W.请你结合函数图象,则区域W内的整点个数为______;
(2)将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围______.
4、已知,,在x轴找一点P,使的值最小,则点P的坐标为_______.
5、如果点P1(3,y1),P2(2,y2)在一次函数y=8x-1的图像上,那么y1______y2.(填“>”、“<”或“=”)
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线l1的函数解析式为y=﹣x+1,且l1与x轴交于点A,直线l2经过点B,D,直线l1,l2交于点C.
(1)求直线l2的函数解析式;
(2)求△ABC的面积.
2、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)直接写出A型桌椅每套 元,B型桌椅每套 元;
(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.
①求y与x之间的函数关系,并直接写出x的取值范围;
②求出总费用最少的购置方案.
3、已知直线与x轴交于点,与y轴相交于点,直线与y轴交于点C,与x轴交于点D,连接BD.
(1)求直线的解析式;
(2)直线上是否存在一点E,使得,若存在求出点E的坐标,若不存在,请说明理由.
4、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.
(1)N95型和一次性成人口罩每箱进价分别为多少元?
(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?
(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?
5、如图,在平面直角坐标系中,三个顶点的坐标分别为,,,将进行平移,使点移动到点,得到△,其中点、、分别为点、、的对应点
(1)请在所给坐标系中画出△,并直接写出点的坐标;
(2)求的面积;
(3)直线过点且平行于轴,在直线上求一点使与的面积相等,请写出点的坐标.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据图象依次分析判断.
【详解】
解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;
开挖2h时,乙队所挖的河渠的长度为30m,
甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,
开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;
由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;
甲队开挖4h时,所挖河渠的长度为,
乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;
故选:D.
【点睛】
此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.
2、C
【解析】
【分析】
由点和点关于轴对称,可求出点的坐标,再利用一次函数图象上点的坐标特征可得出关于的方程,解之即可得出结论.
【详解】
解:点和点关于轴对称,
点的坐标为.
又点在直线上,
,
.
故选:C.
【点睛】
本题考查了一次函数图象上点的坐标特征以及关于轴、轴对称的点的坐标,解题的关键是牢记直线上任意一点的坐标都满足函数关系式.
3、D
【解析】
【分析】
根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.
【详解】
A、一次函数中,∵,的符号未知,故不能判断函数的增减性,故本选项不正确;
B、当m=3时,一次函数与的图象不是两条平行线,故本选项不正确;
C、一次函数,过定点,故本选项不正确;
D、一次函数,过定点,则不论m取何值,图像都经过第四象限,故本选项正确.
故选D.
【点睛】
本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.
4、C
【解析】
【分析】
根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数的图象经过第一、二、四象限,此题得解.
【详解】
解:∵k=-2<0,b=1>0,
∴一次函数y=-2x+1的图象经过第一、二、四象限,
∴一次函数y=-2x+1的图象不经过第三象限.
故选:C.
【点睛】
本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.
5、D
【解析】
【分析】
由图像可知, 当时,y与x的函关系为:y=x,当x=8时,y=8,即P与A重合时,的面积为8,据此求出CD,BC,再根据勾股定理求出AB即可P.
【详解】
解:如图2,当时,设y=kx,
将(3,3)代入得,k=1,
,
当P与A重合时,即:PC=AC=8,由图像可知,把x=8代入y=x,y=8,
,
,
,
是BC的中点,
在Rt中,
故选:D.
【点睛】
本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.
6、C
【解析】
【分析】
分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
【详解】
解:当两车相遇时,所用时间为120÷(60+90)=小时,
B车到达甲地时间为120÷90=小时,
A车到达乙地时间为120÷60=2小时,
∴当0≤x≤时,y=120-60x-90x=-150x+120;
当<x≤时,y=60(x-)+90(x-)=150x-120;
当<x≤2是,y=60x;
由函数解析式的当x=时,y=150×-120=80.
故选:C
【点睛】
本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
7、C
【解析】
【分析】
根据一次函数的增减性解答.
【详解】
解:∵直线,k=-2
相关试卷
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步测试题,共25页。试卷主要包含了若点,下列不能表示是的函数的是,已知P1等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了若一次函数,若实数,下列不能表示是的函数的是等内容,欢迎下载使用。
这是一份2021学年第二十一章 一次函数综合与测试课时作业,共32页。试卷主要包含了下列函数中,一次函数是等内容,欢迎下载使用。