搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数章节训练练习题(含详解)

    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数章节训练练习题(含详解)第1页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数章节训练练习题(含详解)第2页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数章节训练练习题(含详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十一章 一次函数综合与测试同步测试题

    展开

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步测试题,共25页。试卷主要包含了若点,下列不能表示是的函数的是,已知P1等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知点A的坐标为,点A关于x轴的对称点落在一次函数的图象上,则a的值可以是( )
    A.B.C.D.
    2、直线不经过点( )
    A.(0,0)B.(﹣2,3)C.(3,﹣2)D.(﹣3,2)
    3、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )
    A.小于0B.等于0C.大于0D.非负数
    4、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )
    A.y=﹣2x+24(0<x<12)B.y=﹣x+12(8<x<24)
    C.y=2x﹣24(0<x<12)D.y=x﹣12(8<x<24)
    5、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )
    A.y1>y2B.y1<y2C.y1=y2D.无法确定
    6、下列问题中,两个变量成正比例的是( )
    A.圆的面积S与它的半径r
    B.三角形面积一定时,某一边a和该边上的高h
    C.正方形的周长C与它的边长a
    D.周长不变的长方形的长a与宽b
    7、下列不能表示是的函数的是( )
    A.
    B.
    C.
    D.
    8、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是( )
    A.两人出发1小时后相遇
    B.王明跑步的速度为8km/h
    C.陈启浩到达目的地时两人相距10km
    D.陈启浩比王明提前1.5h到目的地
    9、已知P1(﹣3,y1)、P2(2,y2)是y=﹣2x+1的图象上的两个点,则y1、y2的大小关系是( )
    A.y1>y2B.y1=y2C.y1<y2D.不能确定
    10、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )

    A.小豪爸爸出发后12min追上小豪B.小李爸爸的速度为300m/min
    C.小豪骑自行车的速度为250m/minD.爸爸到达公司时,小豪距离书店500m
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、请写出一个过第二象限且与轴交于点的直线表达式___.
    2、下列函数:①;②;③;④;⑤.其中一定是一次函数的有____________.(只是填写序号)
    3、观察图象可知:
    当k>0时,直线y=kx+b从左向右______;
    当k<0时,直线y=kx+b从左向右______.
    由此可知,一次函数y=kx+b(k,b是常数,k≠0) 具有如下性质:
    当k>0时,y随x的增大而______;当k<0时,y随x的增大而______.
    4、已知点 P(a,b)在一次函数 y=3x-1 的图像上,则 3a-b+1=_________.
    5、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知y与成正比例,且当时,;
    (1)求出y与x之间的函数关系式;
    (2)当时,求y的值;
    (3)当时,求x的取值范围.
    2、已知一次函数 y=-x+2.
    (1)求这个函数的图像与两条坐标轴的交点坐标;
    (2)在平面直角坐标系中画出这个函数的图像;
    (3)结合函数图像回答问题:
    ①当 x>0 时,y 的取值范围是 ;
    ②当 y<0 时,x 的取值范围是 .
    3、如图,平面直角坐标系xOy中,点A、B的坐标分别为A(a,0),B(0,b),其中a,b满足+b2﹣8b+16=0,点P在y轴上,且在B点上方,PB=m(m>0),以AP为边作等腰直角△APM,∠APM=90°,PM=PA,点M落在第一象限.
    (1)a= ;b= ;
    (2)求点M的坐标(用含m代数式表示);
    (3)若射线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.
    4、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.
    (1)求今年每套A型、B型一体机的价格各是多少万元?
    (2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?
    5、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.
    (1)求k的值;
    (2)求四边形OCNB的面积;
    (3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.
    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    由点和点关于轴对称,可求出点的坐标,再利用一次函数图象上点的坐标特征可得出关于的方程,解之即可得出结论.
    【详解】
    解:点和点关于轴对称,
    点的坐标为.
    又点在直线上,


    故选:C.
    【点睛】
    本题考查了一次函数图象上点的坐标特征以及关于轴、轴对称的点的坐标,解题的关键是牢记直线上任意一点的坐标都满足函数关系式.
    2、B
    【解析】
    【分析】
    将各点代入函数解析式即可得.
    【详解】
    解:A、当时,,即经过点,此项不符题意;
    B、当时,,即不经过点,此项符合题意;
    C、当时,,即经过点,此项不符题意;
    D、当时,,即经过点,此项不符题意;
    故选:B.
    【点睛】
    本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.
    3、C
    【解析】
    【分析】
    一次函数过第一、二、三象限,则,根据图象结合性质可得答案.
    【详解】
    解:如图,函数的图象经过第一、二、三象限,
    则函数的图象与轴交于正半轴,

    故选C
    【点睛】
    本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.
    4、B
    【解析】
    【分析】
    根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.
    【详解】
    解:根据题意得,菜园三边长度的和为24m,
    即,
    所以,
    由y>0得,,
    解得,
    当时,即,
    解得,
    ∴,
    故选:B.
    【点睛】
    题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.
    5、A
    【解析】
    【分析】
    根据一次函数的性质得出y随x的增大而减小,进而求解.
    【详解】
    由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,
    ∵-3<2,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.
    6、C
    【解析】
    【分析】
    分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
    【详解】
    解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
    所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
    所以正方形的周长C与它的边长a成正比例,故C符合题意;

    所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
    故选C
    【点睛】
    本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
    7、B
    【解析】
    【分析】
    根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
    【详解】
    解:A、根据图表进行分析为一次函数,设函数解析式为:,
    将,,,
    分别代入解析式为:

    解得:,,
    所以函数解析式为:,
    ∴y是x的函数;
    B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
    C、D选项从图象及解析式看可得y是x的函数.
    故选:B.
    【点睛】
    题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
    8、C
    【解析】
    【分析】
    根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.
    【详解】
    解:由图象可知,
    两人出发1小时后相遇,故选项A正确;
    王明跑步的速度为24÷3=8(km/h),故选项B正确;
    陈启浩的速度为:24÷1-8=16(km/h),
    陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),
    故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;
    陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;
    故选:C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
    9、A
    【解析】
    【分析】
    分别把P1(-3,y1)、P2(2,y2)代入y=-2x+1,求出y1、y2的值,并比较出其大小即可.
    【详解】
    解:∵P1(-3,y1)、P2(2,y2)是y=-2x+1的图象上的两个点,
    ∴y1=6+1=7,y2=-4+1=-3,
    ∵7>-3,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    10、B
    【解析】
    【分析】
    根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
    【详解】
    解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
    (5x+5×x)÷5=x(m/min),
    ∵公司位于家正西方500米,
    ∴(−10−2)×x=500+(5+2.5)x,
    解得x=200,
    ∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
    爸爸到达公司时,丁丁距离商店路程为:
    3500-(−12)×(300+200)=m.
    综上,正确的选项为B.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
    二、填空题
    1、(答案不唯一)
    【解析】
    【分析】
    因为直线过第二象限,与y轴交于点(0,-3),则b=-3.写一个满足题意的直线表达式即可
    【详解】
    解:直线过第二象限,且与轴交于点,
    ,,
    直线表达式为:.
    故答案为:(答案不唯一).
    【点睛】
    本题考查了一次函数的图像和性质,解题的关键是熟记一次函数的图像和性质.
    2、②③⑤
    【解析】
    【分析】
    根据一次函数的定义条件解答即可.
    【详解】
    解:①y=kx当k=0时原式不是一次函数;
    ②是一次函数;
    ③由于=x,则是一次函数;
    ④y=x2+1自变量次数不为1,故不是一次函数;
    ⑤y=22−x是一次函数.
    故答案为:②③⑤.
    【点睛】
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
    3、 上升 下降 增大 减小
    【解析】

    4、2
    【解析】
    【分析】
    由点P在一次函数图象上,利用一次函数图象上点的坐标特征可得出b=3a-1,再将其代入(3a-b+1)中即可求出结论.
    【详解】
    解:∵点P(a,b)在一次函数y=3x-1的图象上,
    ∴b=3a-1,
    ∴3a-b+1=3a-(3a-1)+1=2.
    故答案为:2.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
    5、
    【解析】
    【分析】
    设过的正比例函数为: 求解的值及函数解析式,再把代入函数解析式即可.
    【详解】
    解:设过的正比例函数为:
    解得:
    所以正比例函数为:
    当时,
    故答案为:
    【点睛】
    本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.
    三、解答题
    1、 (1)
    (2)
    (3)
    【解析】
    【分析】
    (1)根据正比例的定义,设y=k(x+2),然后把已知一组对应值代入求出k即可;
    (2)利用(1)中的函数关系式求自变量为−3对应的函数值即可;
    (3)通过解不等式2x+4<−2即可.
    (1)
    解:设y=k(x+2)(k≠0),
    当x=1,y=6得k(1+2)=6,
    解得k=2,
    所以y与x之间的函数关系式为y=2x+4;
    (2)
    x=−3 时,y=2×(−3)+4=−2;
    (3)
    y<−2 时,2x+4<−2,
    解得.
    【点睛】
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    2、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);
    (2)见解析
    (3)①y<2;②x>2
    【解析】
    【分析】
    (1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;
    (2)两点法画出函数图象;
    (3)通过观察函数图象求解即可.
    (1)
    解:令x=0,则y=2,
    令y=0,则x=2,
    ∴这个函数的图像与坐标轴的交点为(0,2),(2,0);
    (2)
    解:这个函数的图像如图所示:

    (3)
    解:①观察图像可知:当x>0时,y<2,
    故答案为:y<2;
    ②观察图像可知:当y<0时,x>2,
    故答案为:x>2.
    【点睛】
    本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.
    3、 (1)4;4
    (2)(m+4,m+8)
    (3)不变,(﹣4,0)
    【解析】
    【分析】
    (1)将进行变形,然后根据二次根式有意义的条件及平方的非负性质即可进行求解;
    (2)过点M作轴于点N,利用同角的余角相等可得,根据全等三角形的判定和性质可得,,,结合图象即可得出结果;
    (3)设直线MB的解析式为,由(2)结论将点M的坐标代入整理可得,根据题意可得:,将其代入可确定函数解析式,即可确定点Q的坐标.
    (1)

    则,
    ∵,,
    ∴,,
    解得:,,
    故答案为:4;4;
    (2)
    过点M作轴于点N,
    ∵,
    ∴,
    ∵,
    ∴,
    在和中,

    ∴,
    ∴,,
    ∴,
    ∴点M的坐标为;
    (3)
    点Q的坐标不变,
    理由如下:设直线MB的解析式为,
    则,
    整理得,,
    ∵,
    ∴,
    解得:,
    ∴直线MB的解析式为,
    ∴无论m的值如何变化,点Q的坐标都不变,为.
    【点睛】
    题目主要考查二次根式有意义的条件及平方的非负性质,全等三角形的判定和性质,利用待定系数法确定一次函数解析式等,理解题意,综合运用这些知识点是解题关键.
    4、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元
    (2)1800万
    【解析】
    【分析】
    (1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;
    (2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.
    (1)
    设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,
    由题意得:,
    解得:
    答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;
    (2)
    设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,
    由题意可得:1.8(1100-m)≥1.2(1+25%)m,
    解得:m≤600,
    设明年需投入W万元,
    W=1.2×(1+25%)m+1.8(1100-m)
    =-0.3m+1980,
    ∵-0.3<0,
    ∴W随m的增大而减小,
    ∵m≤600,
    ∴当m=600时,W有最小值-0.3×600+1980=1800,
    故该市明年至少需投入1800万元才能完成采购计划.
    【点睛】
    本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.
    5、 (1)k=2;
    (2)7;
    (3)≤m≤3
    【解析】
    【分析】
    (1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;
    (2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;
    (3)先求得点P的纵坐标,根据题意列不等式组求解即可.
    (1)
    解:令x=0,则y=2;
    ∴B (0,2),
    ∴OB=2,
    ∵AB=;
    ∴OA=1,
    ∴A (-1,0),
    把B (-1,0)代入y=kx+2得:0=-k+2,
    ∴k=2;
    (2)
    解:∵直线l2平行于直线y=−2x.
    ∴设直线l2的解析式为y=−2x+b.
    把(2,2)代入得2=−22+b,
    解得:b=6,
    ∴直线l2的解析式为.
    令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),
    由(1)得直线l1的解析式为.
    解方程组得:,
    ∴N (1,4),
    四边形OCNB的面积=S△ODC- S△NBD
    =
    =7;
    (3)
    解:∵点P的横坐标为m,
    ∴点P的纵坐标为,
    ∴PM=,
    ∵PM≤3,且点P在线段CD上,
    ∴≤3,且m≤3.
    解得:≤m≤3.
    【点睛】
    本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.
    0
    5
    10
    15
    3
    3.5
    4
    4.5

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了若一次函数,若实数,下列不能表示是的函数的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了一次函数的图象不经过的象限是,已知点,都在直线上,则,如图,一次函数y=kx+b等内容,欢迎下载使用。

    2021学年第二十一章 一次函数综合与测试达标测试:

    这是一份2021学年第二十一章 一次函数综合与测试达标测试,共28页。试卷主要包含了如图所示,直线分别与轴等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map