![2022年最新精品解析冀教版八年级数学下册第二十章函数专题测评试题第1页](http://img-preview.51jiaoxi.com/2/3/12765362/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版八年级数学下册第二十章函数专题测评试题第2页](http://img-preview.51jiaoxi.com/2/3/12765362/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版八年级数学下册第二十章函数专题测评试题第3页](http://img-preview.51jiaoxi.com/2/3/12765362/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十章 函数综合与测试课时训练
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共25页。
冀教版八年级数学下册第二十章函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①2、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是( )A. B. C. D.3、函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.…………小明根据他的发现写出了以下三个命题:①当时,函数图象关于直线对称;②时,函数有最小值,最小值为;③时,函数的值随点的增大而减小.其中正确的是( )A.①② B.①③ C.②③ D.①②③4、函数y=中的自变量x的取值范围是( )A.x>0 B.x≥﹣1 C.x>0且x≠﹣1 D.x≥﹣1且x≠05、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )A.1个 B.2个 C.3个 D.4个6、如图,在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D→A作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是( )A. B.C. D.7、洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中,洗衣机内的水量(升)与浆洗一遍的时间(分)之间的关系的图象大致为( )A. B.C. D.8、速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=40,则b=.其中说法正确的是( )A.①②③ B.①④ C.①② D.①③9、甲、乙两人骑车分别从A、B两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20min 再以原速返回A地,当两人到达A地后停止骑行.设甲出发x min后距离A地的路程为y km.图中的折线表示甲在整个骑行过程中y与x的函数关系.在整个骑行过程中,两人只相遇了1次,乙的骑行速度(单位:km/min)可能是( )A.0.1 B.0.15 C.0.2 D.0.2510、如图1,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( ).A.线段EF B.线段DE C.线段CE D.线段BE第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形中,动点从点出发,沿运动至点停止,设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则的面积是__________.2、如图1,在△ABC中,AB>AC,D是边BC上的动点.设B,D两点之间的距离为x,A,D两点之间的距离为y, 表示 y与x的函数关系的图象如图2所示.线段AC的长为_________________,线段AB的长为____________.3、下表为研究弹簧长度与所挂物体质量关系的实验表格:所挂物体重量x(kg)12345弹簧长度y(cm)1012141618则弹簧长度y与所挂物体重量x的之间的关系式为________________,当所挂物体质量为3.5kg时,弹簧长度为__________.4、汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是_____,其中的常量是_____,变量是_____.5、已知抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),则代数式2m2﹣2m+2019的值为_____.三、解答题(5小题,每小题10分,共计50分)1、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012345…y…6a0﹣1.5﹣2﹣1.5020b…(1)表中a= ;b= ;(2)根据表中的数据画出该函数的大致图象,并根据函数图象写出该函数的一条性质.(3)已知直线的图象如图所示,结合你所画的函数图象,当y1>y2时直接写出x的取值范围.(保留1位小数,误差不超过0.2)2、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,按要求完成下列各小题:(1)写出解析式中a、b的值,____________、____________;x…012345……1236321…(2)在图中补全该函数图象,并写出这个函数的一条性质_____________;(3)已知函数的图象如图所示,结合图象,直接写出的解集.(近似值保留一位小数,误差不超过0.2)3、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)在上升或下降过程中,无人机的速度为多少?(2)图中a表示的数是 ;b表示的数是 ;(3)无人机在空中停留的时间共有 分钟.4、如果,如;;……那么________.5、如图,这是反映爷爷一天晚饭后从家中出发去红旗河体育公园锻炼的时间与离家距离之间关系的一幅图.(1)爷爷这一天从公园返回到家用多长时间?(2)爷爷散步时最远离家多少米?(3)爷爷在公园锻炼多长时间?(4)直接写出爷爷在出发后多长时间离家450m. -参考答案-一、单选题1、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.2、D【解析】【分析】根据速度,时间与路程的关系得出,变形即可.【详解】解:根据速度,时间与路程的关系得∴.故选D.【点睛】本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.3、C【解析】【分析】(1)把,代入 求出、,画出函数图像,函数图象关于直线对称,则横纵坐标交换位置,即可判断①;根据图像可判断②③.【详解】把,代入 得:,画出函数图像如图所示:当时,;当时,,故①错误;由图像可得出:②③正确.故选:C.【点睛】函数的图像与性质,根据表格画函数图像,掌握对称的性质是解题的关键.4、D【解析】【分析】根据二次根式被开方数大于或等于0和分母不为0列不等式组即可.【详解】解:由题意得:x+1≥0且x≠0,解得:x≥-1且x≠0,故选:D.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.5、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;由小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A地千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.6、B【解析】【分析】运用动点函数进行分段分析,当P在BC上,P在CD上以及P在AD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【详解】解:点P从点B到点C,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×BP=×2x=x;因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以S与点P运动的路程x之间的函数关系是:S=1(1≤x≤3);点P从点D到点A,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×AP=×2×(4﹣x)=﹣x+4.所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:故选:B.【点睛】本题主要考查了动点问题的函数图像,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点到点以及从点到点,△ABP的面积S与点P运动的路程x之间的函数关系.7、B【解析】【分析】根据洗衣机内水量开始为0,注水后水量变多,清洗时水量不变,排水时水量变小,直到水量变为0;由此即可得到答案.【详解】解:解:因为洗衣机工作前洗衣机内无水,所以A,C两选项不正确,被淘汰;又因为洗衣机最后排完水,所以D选项不正确,被淘汰,所以选项B正确.故选:B.【点睛】本题考查了对函数图象的理解能力.解题关键是看函数图象要理解两个变量的变化情况.8、D【解析】【分析】①利用“速度=路程÷时间”可求出两车的速度差,结合快车的速度即可求得a值,即可判断①;②利用“时间=两车之间的距离÷两车速度差”可得出b值,由s不确定可得出b值不确定即可判断②;③利用“两车第二次相遇的时间=快车转向时的时间+两车之间的距离÷两车的速度之和”可得出c值,即可判断③;④由②的结论结合s=40可得出b值,即可判定④.【详解】解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),∴a=100﹣40=60,结论①正确;②两车第一次相遇所需时间=(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+=b+(h),∴c=b+,结论③正确;④∵b=,s=40,∴b=1,结论④不正确.故选:D.【点睛】本题主要考查了一次函数的应用,掌握数形结合思想成为解答本题的关键.9、D【解析】【分析】由函数图象可求出甲、乙骑行的时间,根据题意和路程÷时间=速度可求出乙的最小速度即可求解.【详解】解:由函数图象知,A、B两地的距离为25km,甲往返的时间为50+50+20=120(min),∵两人到达A地后停止骑行,且在整个骑行过程中,两人只相遇了1次,∴乙的骑行的速度至少为25÷120= (km/min),∵>0.2,<0.25,∴乙的骑行速度可能是0.25km/min,故选:D.【点睛】本题考查一次函数的应用,理解题意,准确从图象中获取有效信息是解答的关键.10、B【解析】【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】解:A、由图1可知,若线段EF是y,则y随x的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;B、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故此选项符合题意;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故此选项不符合题意;D、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故此选项不符合题意;故选B.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.二、填空题1、10【解析】【分析】根据函数的图象、结合图形求出AB、BC的值,根据三角形的面积公式得出△ABC的面积.【详解】解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9-4=5,∴AB=5,BC=4,∴△ABC的面积是:×4×5=10.故答案为:10.【点睛】本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出有关的线段的长度,从而得出三角形的面积是本题的关键.2、 【解析】【分析】从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,进而求解.【详解】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,,则,在Rt△ABH中,,故答案为:,.【点睛】本题考查的是动点问题的函数图象,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.3、 y=2x+8 15cm【解析】【分析】设y=kx+b,取表格两组数据代入解出k、b,即可求得y与x的关系式,再将x=3.5代入求解即可.【详解】解:由题意,设弹簧长度y与所挂物体重量x的之间的关系式为y=kx+b,将x=1,y=10和x=2,y=12代入y=kx+b中,得:,解得:,∴弹簧长度y与所挂物体重量x的之间的关系式为y=2x+8,当x=3.5时,y=2×3.5+8=15,故答案为:y=2x+8,15cm.【点睛】本题考查待定系数法求函数关系式、解二元一次方程组,熟练掌握待定系数法求函数表达式的方法步骤是解答的关键.4、 Q=40-5t 40,5 Q,t【解析】略5、2025【解析】【分析】首先把(m,0)代入y=x2-x-3可得m2-m=3,进而可得2m2﹣2m+2019的值.【详解】解:∵抛物线y=x2﹣x﹣3,与x轴的一个交点为(m,0),∴m2-m-3=0,随意m2-m=3,2m2﹣2m+2019=2(m2﹣m)+2019=6+2019=2025.故答案为2025.【点睛】本题考查了二次函数图象上点的坐标特征,根据点在抛物线上得出m2-m-3=0是解题的关键.三、解答题1、 (1)2.5;﹣2(2)见解析(3)x<﹣2或1.5<x<5【解析】【分析】(1)根据解析式计算即可;(2)利用描点法画出函数图象,观察图象可得函数的一条性质;(3)根据图象即可求解.(1)解:当x=﹣3时,y1=×(﹣3)2﹣2=2.5,∴a=2.5,当x=5时,y1=2﹣2×|5﹣3|=﹣2,∴b=﹣2,故答案为:2.5,﹣2;(2)解:画出函数图象如图所示:由图象得:x<0时,y随x的增大而减小;(3)画出直线的图象如图所示,由图象可知,当y1>y2时,x的取值范围为:x<﹣2或1.5<x<5.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.2、(1),;(2)画图见解析,当时随增大而增大(答案不唯一);(3)或.【解析】【分析】(1)用待定系数法求解函数解析式,即可求得,;(2)补全图象,并观察图象,当时,随增大而增大(答案不唯一);(3)根据图象两函数交点,即可求得不等式的解集.【详解】解:(1)将,代入函数得,解得:,故答案为:,;(2)补全该函数如下,由图象可得,当时随增大而增大(答案不唯一);(3)由(1)可得,观察图象可知,的解集为或.【点睛】本题考查利用待定系数法求得函数中系数的值,函数的性质,利用函数图象解不等式,其中利用函数图象解不等式是解题关键.3、(1)无人机的速度为25米/分;(2)2;15;(3)9.【解析】【分析】(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;(2)根据(1)中求得的结果,由路程=速度×时间进行求解即可;(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可.【详解】解:(1)∵无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,∴无人机的速度为75-50=25米/分;(2)由题意得:,,故答案为:2,15;(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,故答案为:9【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像.4、####【解析】【分析】由,计算得到,观察得到,由此将原式化简计算即可.【详解】解:∵∴∴∴==故答案为:【点睛】本题考查函数的概念,牢记知识点并灵活应用是解题关键.5、(1)15;(2)900;(3)10;(4)10分钟或分钟【解析】【分析】(1)根据图中表示可得结果;(2)根据图象可知最远就是到公园的距离;(3)根据图象可得平行的部分就是在公园的时间;(4)求出相应直线的函数解析式,即可得解;【详解】(1)由图可知,时间为(分);(2)由图可知,最远离家900米;(3)爷爷在公园锻炼的时间(分);(4)如图,设直线AB所在解析式为,把点代入可得:,∴解析式为,当时,;设直线CD所在解析式为,把点,代入得,,解得,∴解析式为,当时,;∴爷爷在出发后10分钟或分钟离家450m.【点睛】本题主要考查了函数图像的应用,准确分析计算是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试课后练习题,共25页。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后测评,共26页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
这是一份数学八年级下册第二十章 函数综合与测试巩固练习,共21页。试卷主要包含了下图中表示y是x函数的图象是,函数y=的自变量x的取值范围是,函数中,自变量x的取值范围是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)