![2022年最新精品解析冀教版八年级数学下册第二十章函数专题测评试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12765419/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版八年级数学下册第二十章函数专题测评试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12765419/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版八年级数学下册第二十章函数专题测评试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12765419/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十章 函数综合与测试课后测评
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后测评,共26页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列曲线中,表示y是x的函数的是( )A. B.C. D.2、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米3、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有( )个A.1 B.2 C.3 D.44、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是( )A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x5、如图1,在菱形ABCD中,AB=6,∠BAD=120°,点E是BC边上的一动点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H(a,b)是图象上的最低点,则a+b的值为( )A. B. C. D.366、小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为(千米),速度为(千米/分),时间为(分)下列函数图象能表达这一过程的是( )A. B.C. D.7、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:( )A.该游泳池内开始注水时已经蓄水100m3B.每小时可注水190m3C.注水2小时,游泳池的蓄水量为380m3D.注水2小时,还需注水100m3,可将游泳池注满8、下图中表示y是x函数的图象是( )A. B.C. D.9、小明同学利用周末从家里出发骑自行车到某小区参加志愿服务活动、活动结束后原路返回家中,他离家的距离y(千米)与时间x(小时)之间的函数图象如图中折线所示,若,小明返回时骑行的平均速度是前往某小区时的平均速度的,根据图中数据,下列结论中,正确的结论的是( )①某小区离小明家12千米;②小明前往某小区时,中途休息了0.25小时;③小明前往某小区时的平均速度是16千米/小时;④小明在某小区志愿服务的时间为1小时;⑤a的值为.A.2个 B.3个 C.4个 D.5个10、A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速运动,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时,④甲在出发5小时后被乙追上.以上说法正确的个数有( )A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为,一边长为,那么在60,S,a中,变量有________________个.2、若球体体积为,半径为,则.其中变量是_______、_______,常量是________.3、甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发后步行的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有____________.(写出所有正确结论的序号)4、函数y=中自变量x的取值范围是______.5、某生物研究所的水池有两个进水管和一个出水管,进水管的水流速为2立方米分,出水管的水流速为1立方米/分,如果水池中原有10立方米的水,最大容量是40立方米,同时打开三个水管到水池放满后再将它们同时关闭,这一过程中水池中的水量V(立方米)与打开水管后经过的时间t(分钟)之间的函数关系式是___________,其中自变量t的取值范围是____________.三、解答题(5小题,每小题10分,共计50分)1、利用学过的的如何研究函数图象及性质的知识,研究新函数:的函数图象及性质:(1)请通过列表、描点、连线,在平面直角坐标系中画出此函数的图象;(2)由函数图象,可以得到该函数的图象性质:①自变量x的取值范围是,函数值y的取值范围是 .②函数的增减性为: .③函数 (有/无)最值;④函数的对称性为: .2、如果,如;;……那么________.3、下列各曲线中哪些表示y是x的函数?4、如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→ A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒lcm,点Q的速度为每秒2cm, a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒lcm,图②是点P出发x秒后△APD的面积S(cm)与x(秒)的函数关系图象.(1)根据图象得a= ;b= ;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式,井写出自变量取值范围.5、有这样一个问题:探究函数y=的图象与性质.小东根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是 ;(2)列表:x…﹣5﹣4﹣3﹣2﹣1﹣0.500.21.822.534n67…y…﹣1m﹣1.5﹣2﹣3﹣4﹣6﹣7.57.564321.51.21…求出表中m的值为 ,n的值为 .描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;(3)观察发现:结合函数的图象,写出该函数的两条性质:① ;② . -参考答案-一、单选题1、C【解析】【分析】根据函数的定义进行判断即可.【详解】解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,故选:C.【点睛】本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.2、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.3、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t分钟追上甲,,解得t=7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.4、C【解析】【分析】先用x表示出矩形的长,然后根据矩形的面积公式即可解答.【详解】解:设矩形的宽为xcm,则长为(x+3)cm由题意得:S=x(x+3)=x2+3x.故选C.【点睛】本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.5、A【解析】【分析】从图2知,是的最小值,从图1作辅助线知;接下来求出,设与交于点,则求出,,最后得,所以,选.【详解】解:如下图,在边上取点,使得和关于对称,连接,得,连接,作,垂足为,由三角形三边关系和垂线段最短知,,即有最小值,菱形中,,,在△中,,解得,是图象上的最低点,此时令与交于点,由于,在△中,,又,,又的长度为,图2中是图象上的最低点,,又,,故选:A.【点睛】本题考查动点及最小值问题,解题的关键是在于通过翻折点轴对称),然后利用三角形三边关系及垂线段最短原理,判断出最小值为.6、C【解析】【分析】因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案.【详解】解:∵400×5=2000(米)=2(千米),∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米,而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,故排除选项A与B;又∵回到原出发地”表示终点的纵坐标为0,∴排除选项D,故选:C.【点睛】本题考查了函数的图象,解题的关键是理解函数图象的意义.7、B【解析】【分析】根据图象中的数据逐项判断即可解答.【详解】解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,故选:B.【点睛】本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.8、C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义,表示y是x函数的图象是C.故选:C.【点睛】理解函数的定义,是解决本题的关键.9、C【解析】【分析】由的纵坐标为12,可判断①,由可判断②,由总路程除以总时间可判断③,由可判断④,由返程时的速度为:千米/小时,可得返程用的时间为:小时,可判断⑤,从而可得答案.【详解】解:由的纵坐标为12,可得某小区离小明家12千米;故①符合题意;,则小明前往某小区时,中途休息了0.25小时,故②符合题意;由小明前小时的平均速度为:千米/小时, 所以小明后段的速度与前段的速度相等,所以后段的时间为:小时,小明前往某小区时的平均速度为: 千米/小时,故③不符合题意; 所以小明在某小区志愿服务的时间为1小时,故④符合题意; 返程时的速度为:千米/小时, 返程用的时间为:小时,小时,故⑤符合题意;综上:符合题意的有:①②④⑤,故选C【点睛】本题考查的是从函数图象中获取信息,理解图象上点的坐标含义是解本题的关键.10、B【解析】【分析】根据甲、乙函数图像一个是直线一个不是直线即可判断①;根据甲从t=0开始出发,乙从t=0.5出发即可判断②③;根据甲、乙函数图像的交点的横坐标小于5可以判断④.【详解】解:由函数图像可知,甲的函数图像是一条直线,乙的函数图像不是直线,故甲是匀速运动,乙不是匀速运动,故①正确;乙在第0.5小时出发,在第5小时到达,则乙的行进时间为5-0.5=4.5小时,故②错误;根据函数图像可知乙比甲迟出发0.5小时,故③正确,根据函数图像可知,当乙追上甲时,两人的行进路程相同,即在函数图像中的甲、乙函数图像的交点处乙追上甲,则乙追上甲时,甲出发的时间小于5小时,故④错误;故选B.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.二、填空题1、2【解析】【分析】根据变量与常量的定义:变量是在某一变化过程中,发生变化的量,常量是某一变化过程中,不发生变化的量,进行求解即可【详解】解:∵篱笆的总长为60米,∴S=(30-a)a=30a-a2,∴面积S随一边长a变化而变化,∴S与a是变量,60是常量故答案为:2.【点睛】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.2、 【解析】【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为,∴是自变量,是因变量,是常量.故答案为:,,.【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.3、①②③④【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲步行的速度为:180÷3=60米/分,故①正确,乙走完全程用的时间为:1800÷(12×60÷9)=22.5(分钟),故②正确,乙追上甲用的时间为:12−3=9(分钟),故③正确,乙到达终点时,甲离终点距离是:1800−(3+22.5)×60=270米,故④正确,故答案为:①②③④.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4、x1且x-3【解析】【分析】根据分母不为0,被开方数大于等于0,进行计算即可.【详解】解:由题意得:1-x0,且x+30,∴x1且x-3,5、 【解析】【分析】根据题意,先求求得自变量的取值范围,再结合题意列出函数表达式即可.【详解】解:依题意,同时打开三个水管到水池放满后再将它们同时关闭,放满所需要的时间为,,依题意,,即,故答案为:,.【点睛】本题考查了列函数关系式,理解题意列出函数关系式是解题的关键.三、解答题1、 (1)见解析(2)①x≠0,y≠0;②在各自的象限内,y随x的增大而减小;③无;④关于原点中心对称,关于直线成轴对称【解析】【分析】(1)列出若干组x,y的值,列出表格,在坐标系中描点,再用平滑的曲线连接即可;(2)根据图象直接得出结论.(1)解:列表x…-3-2-1123…y…-11… 描点、画图:(2)由图象可得:①自变量x的取值范围是x≠0,函数值y的取值范围是y≠0.②函数的增减性为:在各自的象限内,y随x的增大而减小.③函数无最值;④函数的对称性为:关于原点中心对称,关于直线成轴对称.【点睛】本题考查了画函数图象,函数的性质,属于基础知识,要能准确画出函数图象,从中得到函数性质,是一种基本的研究函数的方法.2、####【解析】【分析】由,计算得到,观察得到,由此将原式化简计算即可.【详解】解:∵∴∴∴==故答案为:【点睛】本题考查函数的概念,牢记知识点并灵活应用是解题关键.3、图(1)(2)(3)中y是x的函数【解析】【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可得出结论.【详解】解:图(1)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数; 图(2)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数; 图(3)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;图(4)对于一部分自变量x的值,y有两个值与之相对应, y不是x的函数;故图(1)(2)(3)中y是x的函数【点睛】本题主要考查了函数概念,关键是掌握注意对函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.4、(1)a=6;b=2;(2)y1=2x-6(6≤x≤17),y2=22-x(6≤x≤22)【解析】【分析】(1)先判断出P改变速度时是在AB上运动,由此即可求出改变速度的时间和位置,从而求出a,再根据在第8秒P的面积判断出此时P运动到B点,即可求出b;(2)根据P和Q的总路程都是CD+BC+AB=28cm,然后根据题意进行求解即可.【详解】解:(1)∵当P在线段AB上运动时,,∴当P在线段AB上运动时,△APD的面积一直增大,∵四边形ABCD是矩形,∴AD=BC=10cm,∴当P在线段AB上运动时,△APD的面积的最大值即为P运动到B点时,此时,由函数图像可知,当P改变速度时,此时P还在AB上运动,∴,即,解得,∴,∴又由函数图像可知当P改变速度之后,在第8秒面积达到40cm2,即此时P到底B点∴,∴,故答案为:6,2;(2)由(1)得再第6秒开始改变速度,∴改变速度时,P行走的路程为6cm,Q行走的路程为12cm,∵Q和P的总路程都为CD+BC+AB=28cm,∴,【点睛】本题主要考查了从函数图像上获取信息,解题的关键在于能够准确根据函数图像判断出P点在改变速度时是在AB上运动.5、(1)x≠1;(2)2,5,图象见解析;(3)①图象是中心对称图形,对称中心的坐标是(1,0);②当x>1时,y随x的增大而减小(答案不唯一).【解析】【分析】(1)根据分母不为0即可得出关于x的不等式,解之即可求解;(2)将x=4代入函数解析式即可求出m的值,将y=1.5代入函数解析式即可求出n的值;然后用平滑曲线连线即可画出函数图象;(3)观察函数图象,从增减性及对称性得出结论即可.【详解】(1)由题意得:x-1≠0,解得:x≠1,故答案为:x≠1;(2)当x=4时,m=,当y=1.5时,则1.5=,解得n=5,描点、连线画出函数图象如图,故答案为:2,5;(3)观察函数图象发现:①该图象是中心对称图形,对称中心的坐标是(1,0),②当x>1时,y随x的增大而减小.答案不唯一.【点睛】本题考查了反比例函数图象上点的坐标特征,函数自变量取值范围及反比例函数的性质,解题关键是理解题意,学会利用图象法解决问题.
相关试卷
这是一份数学八年级下册第二十章 函数综合与测试巩固练习,共21页。试卷主要包含了下图中表示y是x函数的图象是,函数y=的自变量x的取值范围是,函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共25页。
这是一份初中数学第二十章 函数综合与测试复习练习题,共25页。试卷主要包含了函数的图象如下图所示等内容,欢迎下载使用。