初中数学第二十章 函数综合与测试当堂检测题
展开
这是一份初中数学第二十章 函数综合与测试当堂检测题,共19页。试卷主要包含了下列图象表示y是x的函数的是,在函数中,自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、EF是BC的垂直平分线,交BC于点D,点A是直线EF上一动点,它从点D出发沿射线DE方向运动,当减少时,增加,则y与x的函数表达式是( )A. B. C. D.2、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道处匀速跑往处,乙同学从处匀速跑往处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为(秒),甲、乙两人之间的距离为(米),与之间的函数关系如图所示,则图中的值是( )A. B.18 C. D.203、根据如图所示的程序计算函数的值,若输入的值为1,则输出的值为2;若输入的值为,则输出的值为( ).A. B. C.4 D.84、函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.…………小明根据他的发现写出了以下三个命题:①当时,函数图象关于直线对称;②时,函数有最小值,最小值为;③时,函数的值随点的增大而减小.其中正确的是( )A.①② B.①③ C.②③ D.①②③5、下列函数中,自变量的取值范围选取错误的是( )A.y=2x2中,x取全体实数 B.y=中,x取x≠-1的实数C.y=中,x取x≥2的实数 D.y=中,x取x≥-3的实数6、甲、乙两人骑车分别从A、B两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20min 再以原速返回A地,当两人到达A地后停止骑行.设甲出发x min后距离A地的路程为y km.图中的折线表示甲在整个骑行过程中y与x的函数关系.在整个骑行过程中,两人只相遇了1次,乙的骑行速度(单位:km/min)可能是( )A.0.1 B.0.15 C.0.2 D.0.257、下列图象表示y是x的函数的是( )A. B. C. D.8、在函数中,自变量x的取值范围是( )A. B. C. D.9、下列关于变量x,y的关系,其中y不是x的函数的是( )A. B.C. D.10、函数的自变量x的取值范围是( )A.x>5 B.x<5 C.x≠5 D.x≥-5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、指出下列事件过程中的常量与变量.(1)某水果店橘子的单价为5元/千克,买a千克橘子的总价为m元,其中常量是_____,变量是_____;(2)周长C与圆的半径r之间的关系式是C=2πr,其中常量是_____,变量是_____;注意:π是一个确定的数,是常量2、函数的图象不经过横坐标是_____的点.3、在函数y=中,自变量x的取值范围是 _____.4、函数,当自变量时,函数值为______.5、用解析式法表示函数时需要注意什么?(1)函数解析式是一个_______;(2)是用含_______的式子表示函数;(3)要确定自变量的_______.三、解答题(5小题,每小题10分,共计50分)1、甲乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过200元后,超出200元的部分按85%收费,在乙商店累计超过100元后,超出部分按照90%收费.(1)若你准备用80元去购物,你会怎样选择商场来购物?若你准备用160元去购物,选择到哪家商场购物花费少?(直接回答)(2)设你购物花费x(x>200)元,实际花费为y元.分别写出在甲、乙两个商场购物时,y与x的函数关系式;(3)在(2)的情况下,请根据两家商场的优惠活动方案,讨论到哪家商场购物花费少?说明理由.2、如果,如;;……那么________.3、一个三角形的底边长为5,高h可以任意伸缩.写出面积S随h变化的解析式,并指出其中的常量与变量,自变量与函数,以及自变量的取值范围.4、汽车在发动后的前10秒内以匀加速a=0.8m/s2行驶,这10s内,经过t(s)汽车行驶的路程为s=at2.(1)求t=2.5s和3.5s时,汽车所行驶的路程.(2)汽车在发动后行驶10m,15m所需的时间各为多少? (精确到0.1)5、某拖拉机的油箱最多可装千克油,装满油后犁地,平均每小时耗油千克,解答下列问题: (1)写出油箱中剩油(千克)与犁地时间(小时)之间的函数关系式;(2)求拖拉机工作小时分钟后,邮箱中的剩油量. -参考答案-一、单选题1、B【解析】【分析】根据垂直平分线的性质可得,,根据题意列出函数关系式即可【详解】 EF是BC的垂直平分线,是的角平分线设,即当减少时,则,增加,则故选B【点睛】本题考查了垂直平分线的性质,三角形内角和定理,列函数关系式,掌握垂直平分线的性质,等腰三角形三线合一是解题的关键.2、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.【详解】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=,故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.3、A【解析】【分析】输入,则有;输入,则有,将代数式的值代入求解即可.【详解】解:输入,则有;输入,则有;故选A.【点睛】本题考查了程序流程图与代数式求值.解题的关键在于正确求解代数式的值.4、C【解析】【分析】(1)把,代入 求出、,画出函数图像,函数图象关于直线对称,则横纵坐标交换位置,即可判断①;根据图像可判断②③.【详解】把,代入 得:,画出函数图像如图所示:当时,;当时,,故①错误;由图像可得出:②③正确.故选:C.【点睛】函数的图像与性质,根据表格画函数图像,掌握对称的性质是解题的关键.5、D【解析】【分析】根据分式的分母不能为0、二次根式的被开方数的非负性即可得.【详解】解:A、中,取全体实数,此项正确;B、,即,中,取的实数,此项正确;C、,,中,取的实数,此项正确;D、,且,,中,取的实数,此项错误;故选:D.【点睛】本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.6、D【解析】【分析】由函数图象可求出甲、乙骑行的时间,根据题意和路程÷时间=速度可求出乙的最小速度即可求解.【详解】解:由函数图象知,A、B两地的距离为25km,甲往返的时间为50+50+20=120(min),∵两人到达A地后停止骑行,且在整个骑行过程中,两人只相遇了1次,∴乙的骑行的速度至少为25÷120= (km/min),∵>0.2,<0.25,∴乙的骑行速度可能是0.25km/min,故选:D.【点睛】本题考查一次函数的应用,理解题意,准确从图象中获取有效信息是解答的关键.7、D【解析】【分析】根据函数的定义,按照一一对应的原则去判断即可. 当任意一个都有唯一的一个与之对应,则称是的函数.【详解】当任意一个都有唯一的一个与之对应,则称是的函数.由图象可知:A,B,C选项都不符合题意,D选项符合题意.故选D.【点睛】本题考查了函数的图像表示法,正确理解变量之间的一一对应思想是解题的关键.8、C【解析】【分析】由题意知,求解即可.【详解】解:由题意知∴故选C.【点睛】本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.9、D【解析】【详解】解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.10、D【解析】【分析】根据二次根式有意义的条件即可得出答案.【详解】解:∵函数,∴,解得:,故选:D.【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.二、填空题1、 5 a,m; 2,π C,r【解析】略2、-3【解析】【分析】根据分式有意义的条件:分母不为0解答即可.【详解】解:函数要有意义,需要,所以不经过横坐标是的点.故答案为:-3.【点睛】本题主要考查了函数的自变量取值范围,掌握代数式有意义时字母的取值范围是解题关键.3、x≠【解析】【分析】根据分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得:3x−4≠0,解得:x≠,故答案为:x≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握分式分母不为0是解题的关键.4、【解析】【分析】将函数的自变量的值代入函数解析式计算即可求解.【详解】解:将代入可得,,解得.故答案为:18.【点睛】本题考查了二次函数的定义,解题的关键是将自变量的值代入函数解析式并准确计算.5、 等式 自变量 取值范围【解析】略三、解答题1、(1)准备用80元去购物,选择两个商场都一样;当准备用160元去购物,选择到乙商场购物花费少;(2)在甲商场购物:y=0.85x+30,在乙商场购物:y=0.9x+10;(3)当购物超过200元却少于400元时,到乙商场购物花费少;当购物400元时,到甲、乙两家商场购物花费一样;当购物超过400元时,到甲商场购物花费少.【解析】【分析】(1)由于准备用80元去购物,没有达到甲、乙商场优惠标准,因此选择两个商场的结果一样;然后计算出买160元的东西分别在甲、乙两商场的花费,然后得出在乙商场更少;(2)根据甲、乙的优方案进行解答;(3)根据(2)中表示出在甲乙两商场的花费列出的不等式,分情况讨论,求出最合适的消费方案.【详解】解:(1)∵准备用80元去购物,没有达到甲乙两种方案的优惠标准,∴选择两个商场的结果一样;在甲商场购买160元的东西需要花费:160(元),在乙商场购买160元的东西需要花费:100+60×0.90=154(元),∵160>154,∴去乙商场花费少;答:准备用80元去购物,选择两个商场都一样;当准备用160元去购物,选择到乙商场购物花费少;(2)由题意得:在甲商场购物:y=200+(x﹣200)×85%=0.85x+30,在乙商场购物:y=100+(x﹣100)×90%=0.9x+10;(3)①若在甲商场花费少,则0.85x+30<0.9x+10,解得x>400,所以当购物超过400元时,到甲商场购物花费少;②若在乙商场花费少,则0.85x+30>0.9x+10,解得x<400,所以当购物超过200元却少于400元时,到乙商场购物花费少;③若到两家商场花费一样多时,则0.85x+30=0.9x+10,解得x=400,所以当购物400元时,到甲、乙两家商场购物花费一样.答:当购物超过200元却少于400元时,到乙商场购物花费少;当购物400元时,到甲、乙两家商场购物花费一样;当购物超过400元时,到甲商场购物花费少.【点睛】本题主要考查了一元一次不等式的实际应用,求函数关系式,解题的关键在于能够根据题意得到相应的关系式进行求解.2、####【解析】【分析】由,计算得到,观察得到,由此将原式化简计算即可.【详解】解:∵∴∴∴==故答案为:【点睛】本题考查函数的概念,牢记知识点并灵活应用是解题关键.3、常量,变量h,S,自变量,函数S,.【解析】【分析】根据三角形的面积公式,可得函数关系式.【详解】解:由三角形的面积公式,得:,常量是,变量h,S,自变量,函数S.【点睛】本题考查了函数关系式,利用三角形的面积公式得出函数解析式是解题关键.4、(1)2.5,4.9;(2)5,6.1【解析】【分析】(1)根据公式,得函数解析式,根据自变量的值,得函数值.(2)根据函数值,得相应的自变量的值.【详解】(1)∵s=at2,∴s=×0.8t2=t2.当t=2.5时,s=×2.52=2.5(m),当t=3.5时,s=×3.52=4.9(m).(2)当s=10时, t2=10,解得t=5(s),当s=15时, t2=15,解得t≈6.1(s).【点睛】本题考查了函数值,利用了函数的自变量与函数值的对应关系.5、(1);(2)29升【解析】【分析】(1)设犁地时间t小时,然后根据某拖拉机的油箱最多可装56千克油,装满油后犁地,平均每小时耗油6千克,进行求解即可;(2)根据拖拉机工作4小时30分钟即,把代入(1)中所求进行求解即可.【详解】解:(1)由题意得:;(2)∵,拖拉机工作时间为4小时30分钟即,∴升,∴邮箱中的剩油量为29升.【点睛】本题主要考查了列函数关系式和代数式求值,解题的关键在于能够根据题意正确列出油箱中剩油Q(千克)与犁地时间t(小时)之间的函数关系式.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试课后作业题,共20页。试卷主要包含了如图所示的图象等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试复习练习题,共18页。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后测评,共30页。试卷主要包含了在下列图象中,是的函数的是等内容,欢迎下载使用。