


冀教版八年级下册第二十章 函数综合与测试同步达标检测题
展开
这是一份冀教版八年级下册第二十章 函数综合与测试同步达标检测题,共23页。试卷主要包含了当时,函数的值是,函数中,自变量x的取值范围是,如图,点A的坐标为等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米2、甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离与行驶时间之间的函数关系,则下列说法:①A、B两地相距;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢;④两车出发后,经过0.3小时,两车相遇.其中正确的有( )A.4个 B.3个 C.2个 D.1个3、中考体育篮球运球考试中,测试场地长20米,宽7米,起点线后5米处开始设置10根标志杆,每排设置两根,各排标志杆底座中心点之间相距1米,距两侧边线3米,假设某学生按照图1路线进行单向运球,运球行进过程中,学生与测试老师的距离y与运球时间x之间的图象如图2所示,那么测试老师可能站在图1中的位置为( )A.点A B.点B C.点C D.点D4、当时,函数的值是( )A. B. C.2 D.15、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是( )A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x6、函数中,自变量x的取值范围是( )A. B.且 C. D.且7、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是( )A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系D.一个正数x的平方根是y,y随着这个数x的变化而变化,y与x之间的关系8、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是( )A. B.C. D.9、如图,在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D→A作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是( )A. B.C. D.10、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:( )A.该游泳池内开始注水时已经蓄水100m3B.每小时可注水190m3C.注水2小时,游泳池的蓄水量为380m3D.注水2小时,还需注水100m3,可将游泳池注满第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数,当时,_______;当时,_______.2、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200…剩余油量Q(升)4035302520…则该汽车每行驶100千米的耗油量为 _____升.3、函数中,自变量x的取值范围是________.4、函数的定义域是 ___.5、在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,若两人之间保持的距离不超过4km时,能够用无线对讲机保持联系,则甲、乙两人总共有________h可以用无线对讲机保持联系.三、解答题(5小题,每小题10分,共计50分)1、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)在上升或下降过程中,无人机的速度为多少?(2)图中a表示的数是 ;b表示的数是 ;(3)无人机在空中停留的时间共有 分钟.2、在计算器上按下面的程序操作:填表:x130101y 显示的计算结果y是输入数值x的函数吗?为什么?3、下表是小华做观察水的沸腾实验时所记录的数据:时间(分)0123456789101112温度(℃)6065707580859095100100100100100(1)时间是8分钟时,水的温度为_____;(2)此表反映了变量_____和_____之间的关系,其中_____是自变量,_____是因变量;4、如图,这是小龙骑自行车离家的距离与时间之间的关系图象.(1)在这个问题中,自变量是 ,因变量是 .(2)小龙何时到达离家最远的地方?此时离家多远?(3)求出当到4h时,小龙骑自行车的速度.5、如图,中,,,是中点,是线段上一动点,连接,设,两点间的距离为,,两点间的距离为.(当点与点重合时,的值为小东根据学习一次函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程:(1)通过取点、画图、测量,得到了与的几组值,如下表,请补充完整(说明:相关数值保留一位小数);01.02.03.04.05.06.07.08.06.35.4 3.7 2.52.42.73.3(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①当取最小值时,的值约为 .(结果保留一位小数)②当是等腰三角形时,的长度约为 .(结果保留一位小数) -参考答案-一、单选题1、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.2、B【解析】【分析】根据从B到A共行驶的路程可判断①;求出乙车行驶时间,甲车行驶时间,根据减法求出时间差可判断②;根据时间与路程,求出甲乙两车的速度,根据减法求出速度差可判断③;设两相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,根据甲乙共走全程列方程,求出时间t可判断④.【详解】解:乙从B地到A共行走24km,故①A、B两地相距正确; 乙摩托车从B到A地用0.5h,甲摩托车从A地到B地用0.6h,∴0.6-0.5=0.1h,故②甲车比乙车行完全程多用了0.1小时正确;甲摩托车行驶的速度为24÷0.6=40km/h,乙摩托车行驶的速度为24÷0.4=48km/h,∴48-40=8km/h,故③甲车的速度比乙车慢正确;设两车相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,∴40t+48t=24,解得h,故④两车出发后,经过0.3小时,两车相遇不正确.故选择B.【点睛】本题考查从行程图像获取信息和处理信息,看懂函数图像,列一元一次方程,时间差,速度差,掌握相关知识是解题关键.3、B【解析】【分析】由题意根据图2可得学生与测试老师的距离的变化情况,进而即可作出判断.【详解】解:根据图2得:学生与测试老师的距离先快速减小,然后短时间缓慢减小,然后再快速减小,又短时间缓慢增大,然后再快速减到最小,又开始快速增大,再减小,而且开始的时候与测试老师的距离大于快结束的时候,由此可得测试老师可能站在图1中的位置为点B.故选:B.【点睛】本题考查动点问题的函数图象,利用观察学生与测试老师之间距离的变化关系得出函数的增减性是解题的关键.4、D【解析】【分析】把代入计算即可.【详解】解:把代入,得,故选D.【点睛】本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.5、C【解析】【分析】先用x表示出矩形的长,然后根据矩形的面积公式即可解答.【详解】解:设矩形的宽为xcm,则长为(x+3)cm由题意得:S=x(x+3)=x2+3x.故选C.【点睛】本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.6、B【解析】【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x-2≥0且x−3≠0,解得且.故选:B.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D、∵一个正数x的平方根是y,∴,对于每一个确定的x,y都有两个值与之对应,不满足函数的关系,故符合题意;故选D.【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.8、A【解析】【分析】先作出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中, ∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.9、B【解析】【分析】运用动点函数进行分段分析,当P在BC上,P在CD上以及P在AD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【详解】解:点P从点B到点C,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×BP=×2x=x;因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以S与点P运动的路程x之间的函数关系是:S=1(1≤x≤3);点P从点D到点A,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×AP=×2×(4﹣x)=﹣x+4.所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:故选:B.【点睛】本题主要考查了动点问题的函数图像,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点到点以及从点到点,△ABP的面积S与点P运动的路程x之间的函数关系.10、B【解析】【分析】根据图象中的数据逐项判断即可解答.【详解】解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,故选:B.【点睛】本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.二、填空题1、 3 【解析】【分析】分别将和代入解析式,即可求解.【详解】解:当时,;当时, ,解得: .故答案为:3; .【点睛】本题主要考查了求函数的自变量和函数值,解题的关键是理解并掌握当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.2、10【解析】【分析】根据表格中两个变量的变化关系得出函数关系式即可.【详解】解:根据表格中两个变量的变化关系可知,行驶路程每增加50千米,剩余油量就减少5升,所以行驶路程每增加100千米,剩余油量就减少10升,故答案为:10.【点睛】本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提.3、x≥0【解析】【分析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵有意义,∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.4、【解析】【分析】根据分式有意义的条件是分母不为0,即可求解.【详解】解:由题意得:x-2≠0,即 .故答案为 .【点睛】本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义 .5、【解析】【分析】根据题意可得A、B两地的距离为40千米;从而得到甲的速度为10千米/时,乙的速度为 20千米/时;然后设x小时后,甲、乙两人相距4km,可得到当 或 时,甲、乙两人可以用无线对讲机保持联系,即可求解.【详解】解:根据题意得:当x=0时,甲距离B地40千米,∴A、B两地的距离为40千米;由图可知,甲的速度为40÷4=10千米/时,乙的速度为40÷2=20千米/时;设x小时后,甲、乙两人相距4km,若是相遇前,则10x+20x=40-4,解得:x=1.2;若是相遇后,则10x+20x=40+4,解得: ;若是到达B地前,则10x-20(x-2)=4,解得:x=3.6∴当 或 时,甲、乙两人可以用无线对讲机保持联系,即甲、乙两人总共有 可以用无线对讲机保持联系.故答案为:【点睛】本题主要考查了函数图象,能够从图形获取准确信息是解题的关键.三、解答题1、(1)无人机的速度为25米/分;(2)2;15;(3)9.【解析】【分析】(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;(2)根据(1)中求得的结果,由路程=速度×时间进行求解即可;(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可.【详解】解:(1)∵无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,∴无人机的速度为75-50=25米/分;(2)由题意得:,,故答案为:2,15;(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,故答案为:9【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像.2、7,11,,5,207,,y是x的函数,符合函数定义.【解析】【分析】根据程序分别求出对应的y的值,再根据函数的定义判断即可.【详解】解:当x=1时,y=1×2+5=7;当x=3时,y=3×2+5=11;当x=-4时,y=(-4)×2+5=-3;当x=0时,y=0×2+5=5;当x=101时,y=101×2+5=207;当x=-5.2时,y=3×2+5=-5.4;给出x的一个值,有唯一的y值与之对应,所以显示的计算结果y是输入数值x的函数.故答案为:7;11;-3;5;207;-5.4.【点睛】本题主要考查了函数的定义,注意:如果y是x的函数,则给出x的一个值,有唯一的y值与之对应.3、(1)100℃;(2)温度,时间,时间,温度【解析】【分析】(1)根据表格中的数据求解即可;(2)观察表格可知,反映的是温度随时间的变化而变化由此即可得到答案.【详解】解:(1)观察表格可知:第8分钟时水的温度为100℃;(2)观察表格可知反映的是温度随着时间的变化而变化的,时间是自变量,温度是因变量;故答案为(1)100℃;(2)温度,时间,时间,温度.【点睛】本题主要考查了用表格表示变量之间的关系,解题的关键在于能够熟练掌握自变量与因变量的定义.4、(1)离家时间,离家距离;(2)小龙2h后到达离家最远的地方,此时离家30km;(3)5km/h【解析】【分析】(1)在坐标系中横坐标是自变量,纵坐标是因变量,据此求解;(2)根据图象可以得到离家最远时的时间,此时离家的距离,据此即可确定;(3)根据图象可知小龙在第2—4小时,两小时的所走路程为30-20=10km,据此即可确定;【详解】解:(1)在这个变化过程中自变量是离家时间,因变量是离家距离.故答案为:离家时间,离家距离;(2)根据图象可知小龙2h后到达离家最远的地方,此时离家30km;(3)由图象知,当t=4时,s=20,当t=2时,s=30,∴小龙在第2—4小时,两小时的所走路程为30-20=10km,∴小龙骑车的速度为10÷2=5km/h.【点睛】本题主要考查了因变量和自变量,从函数图像获取信息,准确读懂函数图像时解题的关键.5、故答案为:0.0【点睛】本题考查函数图象的应用,是基础考点,掌握相关知识是解题关键.8.(1)4.5,3.0;(2)见解析;(3)①5.8;②3.3或6.3【解析】【分析】(1)利用测量方法得到答案;(2)利用描点法作图;(3)①通过测量解答;②根据等腰三角形的定义画出图象,并测量x及y的值,由此得到答案.(1)解:通过取点、画图、测量可得时,,时,,故答案为:4.5,3.0;(2)解:利用描点法,图象如图所示.(3)①由函数图象得,当取最小值时,的值约为;②当是等腰三角形时,有两种情况,如图:时,,,由函数图象得,时,,当是等腰三角形时,的长度约为3.3或.故答案为:①5.8;②3.3或6.3.【点睛】本题考查函数综合题、描点法画函数图象等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考常考题型.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试当堂达标检测题,共21页。试卷主要包含了小明家,下列图象表示y是x的函数的是,如图所示的图象等内容,欢迎下载使用。
这是一份初中冀教版第二十章 函数综合与测试当堂达标检测题,共22页。
这是一份冀教版八年级下册第二十章 函数综合与测试同步训练题,共20页。试卷主要包含了如图,某汽车离开某城市的距离y,函数中,自变量x的取值范围是等内容,欢迎下载使用。
