![2021-2022学年度强化训练冀教版八年级数学下册第二十章函数专题训练试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12765500/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第二十章函数专题训练试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12765500/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第二十章函数专题训练试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12765500/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第二十章 函数综合与测试练习题
展开
这是一份初中数学第二十章 函数综合与测试练习题,共30页。试卷主要包含了函数的自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:)表示注入容器内的水量,则表示V与h的函数关系的图象大致是( )A. B.C. D.2、下列四个图象中,能表示y是x的函数的是( )A. B.C. D.3、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )A. B.C. D.4、函数的自变量x的取值范围是( )A.x>5 B.x<5 C.x≠5 D.x≥-55、汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数.如图描述了、两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )A.消耗1升汽油,车最多可行驶5千米B.车以40千米小时的速度行驶1小时,最少消耗4升汽油C.对于车而言,行驶速度越快越省油D.某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车更省油6、根据如图所示的程序计算函数y的值,若输入x的值为4时,输出的y的值为7,则输入x的值为2时,输出的y的值为( )A.1 B.2 C.4 D.57、如图,在边长为4的等边△ABC中,点P从A点出发,沿A→B→C→A的方向运动,到达A点时停止.在此过程中,线段AP的长度y随点P经过的路程x的函数图象大致是( )A. B.C. D.8、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米9、三地位于同一条笔直的直线上,B在之间,甲、乙两人分别从两地同时出发赶往C地,甲、乙两人距C地的距离s(单位:m)与甲运动的时间t(单位:s)之间的关系如图所示.根据图象判断下列说法错误的是( )A.两地之间的距离为 B.甲的速度比乙快C.甲、乙两人相遇的时间为 D.时,甲、乙两人之间的距离为10、小明同学利用周末从家里出发骑自行车到某小区参加志愿服务活动、活动结束后原路返回家中,他离家的距离y(千米)与时间x(小时)之间的函数图象如图中折线所示,若,小明返回时骑行的平均速度是前往某小区时的平均速度的,根据图中数据,下列结论中,正确的结论的是( )①某小区离小明家12千米;②小明前往某小区时,中途休息了0.25小时;③小明前往某小区时的平均速度是16千米/小时;④小明在某小区志愿服务的时间为1小时;⑤a的值为.A.2个 B.3个 C.4个 D.5个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中表示时间,表示小强离家的距离.图象提供的信息,有以下四个说法:①体育场离小强家千米;②在体育场锻炼了分钟;③体育场离早餐店千米;④小强从早餐店回家的平均速度是千米/小时.其中正确的说法为_____ (只需填正确的序号).2、函数,当自变量时,函数值为______.3、已知函数y=,那么自变量x的取值范围是_________.4、如图,在 Rt△ABC中,∠ACB=90°,BC=4cm,AC=9cm,点 D在线段 CA上从点C出发向点A方向运动(点 D不与点 A,点C重合),且点D运动的速度为2cm/s,现设运动时间为 x(0<x<)秒时,对应的 △ABD 的面积为ycm²,则当x=2 时,y=_________ ;y与x之间满足的关系式为_________.5、一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC中,,,AB=6,点P是射线CB上一点(不与点B重合),EF为PB的垂直平分线,交PB于点F,交射线AB于点E,联结PE、AP.(1)求∠B的度数;(2)当点P在线段CB上时,设BE=x,AP=y,求y关于x的函数解析式,并写出函数的定义域;(3)当APB为等腰三角形时,请直接写出AE的值.2、公交公司员工小明住在站点的员工宿舍,每天早上去站点上班,站到站唯一一条公交线路示意图如图1,、、、是四个公交站点,其中、两站相距的路程是1200米,为了健身,小明往往沿公交线路步行到站或站后再乘公交车上班.(1)星期一,小明步行到站上车,记他距站的路程为米,离开站的时间为分,关于的函数图象如图2,求的解析式及公交车的速度;(2)星期二,小明以与星期一相同出发时间和步行速度步行到站上车,已知公交车无论上行(→)还是下行(→)都每隔10分钟一班,每天始发时间和行车速度保持不变,乘客上下车时间忽略不计;①通过计算判断小明步行到达站时是否恰好有上行公交车到达站;②小明到达站所用时间是星期一的1.5倍,求、两站相距的路程;③若小明步行至站时刚好遇见一辆下行班车,这一趟上班途中,直接写出他遇到下行班车的最短间隔时间.3、在直角梯形中,,,,联结,如图(a).点沿梯形的边,按照点移动,设点移动的距离为,.(1)当点从点移动到点时,与的函数关系如图(b)中折线所示.则______,_____,_____.(2)在(1)的情况下,点按照点移动(点与点不重合),是否能为等腰三角形?若能,请求出所有能使为等腰三角形的的值;若不能,请说明理由.4、滑车以1.5米/分钟的速度匀速地从轨道的一端滑向另一端,已知轨道的长为6米,滑车滑行分钟时离终点的路程为米.(1)求关于的函数关系式,并写出自变量的取值范围;(2)滑行多长时间时,滑车离终点1米?5、利用学过的的如何研究函数图象及性质的知识,研究新函数:的函数图象及性质:(1)请通过列表、描点、连线,在平面直角坐标系中画出此函数的图象;(2)由函数图象,可以得到该函数的图象性质:①自变量x的取值范围是,函数值y的取值范围是 .②函数的增减性为: .③函数 (有/无)最值;④函数的对称性为: . -参考答案-一、单选题1、B【解析】【分析】根据容器的形状可知当液面高度越高时,体积的变化越小,即随着的增大,增大的速度变缓,结合选项即可求解【详解】解:容器的形状可知,底部最大,刚开始当增大时,体积增大较快,但随着的增大,增大的速度变缓,表现出的函数图象即为:函数图象先陡,后缓,结合选项只有B选项符合题意;故选B【点睛】本题考查了函数图象的判断,根据容器的形状以及题意判断函数图象先陡,后缓是解题的关键.2、A【解析】【分析】根据“在一个变化过程中,如果有两个变量x、y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数”,由此可排除选项.【详解】解:选项A符合函数的概念,而B、C、D都不符合“对于x的每一个确定的值,y都有唯一确定的值与其对应”,故选A.【点睛】本题主要考查函数的定义,熟练掌握函数的定义是解题的关键.3、D【解析】【分析】根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.【详解】解:过点A作AD′⊥BC于点D′,如图,由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可知,D选项是正确的;故选:D.【点睛】本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.4、D【解析】【分析】根据二次根式有意义的条件即可得出答案.【详解】解:∵函数,∴,解得:,故选:D.【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.5、B【解析】【分析】根据题意和函数图象可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:A、由图象可知,当车速度超过时,燃油效率大于,所以当速度超过时,消耗1升汽油,车行驶距离大于5千米,故此项不合理,不符合题意;B、车以40千米小时的速度行驶1小时,路程为,,最少消耗4升汽油,此项合理,符合题意;C、对于车而言,行驶速度在时,越快越省油,故此项不合理,不符合题意;D、某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车燃油效率更高,所以更省油,故此项不合理,不符合题意.故选:B.【点睛】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答.6、A【解析】【分析】直接利用已知运算公式公式得出b的值,进而代入求出x=3时对应的值.【详解】解:∵输入x的值是4时,输出的y的值为7,∴7=2×4+b,解得:b=-1,若输入x的值是2,则输出的y的值是:y=-1×2+3=1.故选:A.【点睛】此题主要考查了函数值,正确得出b的值是解题关键.7、A【解析】【分析】根据题意,当点从点运动到点时,的长度随的增大而增大;当点从运动到的中点时,随的增大而减小;当点从的中点运动到点时,随的增大而增大;当点从运动到时,随的增大而减小,最后减小至0,且和时,的值相等,据此判断即可.【详解】解:由题意可知,当点从点运动到点时,的长度随的增大而增大;当点从运动到的中点时,随的增大而减小;且当时,的值最小,故可排除选项与选项;当点从的中点运动到点时,随的增大而增大;当点从运动到时,随的增大而减小,最后减小至0,且和时,的值相等,故选项符合题意,选项不合题意.故选:A.【点睛】本题考查了动点问题的函数图象,三角形的面积等知识,解题的关键是熟练掌握数形结合思想方法.8、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.9、C【解析】【分析】根据图像上的信息逐个分析判断即可.【详解】根据图像可得两地之间的距离为m,∴A选项正确,不符合题意;根据图像可得甲的速度为,乙的速度为,∴,∴甲的速度比乙快,∴B选项正确,不符合题意;设相遇的时间为t,∴,解得:,∴甲、乙两人相遇的时间为,∴C选项错误,符合题意;时,乙运动的路程为m,甲运动的路程为m,∴m,∴时,甲、乙两人之间的距离为.∴D选项正确,不符合题意.故选:C.【点睛】此题考查了实际问题的函数的图像,解题的关键是正确分析出图像中必要的信息.10、C【解析】【分析】由的纵坐标为12,可判断①,由可判断②,由总路程除以总时间可判断③,由可判断④,由返程时的速度为:千米/小时,可得返程用的时间为:小时,可判断⑤,从而可得答案.【详解】解:由的纵坐标为12,可得某小区离小明家12千米;故①符合题意;,则小明前往某小区时,中途休息了0.25小时,故②符合题意;由小明前小时的平均速度为:千米/小时, 所以小明后段的速度与前段的速度相等,所以后段的时间为:小时,小明前往某小区时的平均速度为: 千米/小时,故③不符合题意; 所以小明在某小区志愿服务的时间为1小时,故④符合题意; 返程时的速度为:千米/小时, 返程用的时间为:小时,小时,故⑤符合题意;综上:符合题意的有:①②④⑤,故选C【点睛】本题考查的是从函数图象中获取信息,理解图象上点的坐标含义是解本题的关键.二、填空题1、①②【解析】【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】解:①由纵坐标看出,体育场离张强家2.5千米,故①正确;②由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故②正确;③由纵坐标看出,2.5-1.5=1千米,体育场离早餐店1千米,故③错误;④由纵坐标看出早餐店离家1.5千米,由横坐标看出从早餐店回家用了100-65=35分钟=小时,(千米/小时),故④错误;故答案为①②.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.2、【解析】【分析】将函数的自变量的值代入函数解析式计算即可求解.【详解】解:将代入可得,,解得.故答案为:18.【点睛】本题考查了二次函数的定义,解题的关键是将自变量的值代入函数解析式并准确计算.3、【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,,解得,,故答案为:.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.4、 【解析】【分析】根据,代入数轴求解即可.【详解】解:根据题意得:===,∴当x=2 时,,故答案为:,.【点睛】本题考查了动点问题的函数关系,根据题意得出解析式是关系.5、图象【解析】略三、解答题1、 (1)(2)当点P在线段BC上时,;当点P在CB延长线上时,(3)4或或【解析】【分析】(1)根据勾股定理的逆定理证明出△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,证得△ACM是等边三角形,求得∠B=;(2)当点P在线段BC上时,过点A作AD⊥BC于D,根据直角三角形的性质得到,,由勾股定理得,求出,得到,由勾股定理求出CD,BF,得到DP,由,推出,根据y>0,得到函数关系式;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,求出,勾股定理求得PH,根据,求出函数解析式;(3)当AP=BP时,根据等腰三角形等边对等角的性质及线段垂直平分线的性质证得∠APE=,得到AE=2PE=2BE,由此求出AE=4;当BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.当点P在CB延长线上且BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.(1)解:ABC中,,,AB=6,∵,∴△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,∵,,∴,∴AC=AM=CM,∴△ACM是等边三角形,∴,∴∠B=;(2)解:当点P在线段BC上时,过点A作AD⊥BC于D,在△ADB中,∠ADB=,∠B=,∴,同理,∴,在Rt△BEF中,,∴,∴,又∵BP=2BF,∴,∴DP =,∵,∴,∴,∵y>0,∴;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,∵PE=BE=x,, ∴,∴,∴,∵,∴,∴,∵y>0,∴;综上,当点P在线段BC上时,;当点P在CB延长线上时,;(3)解:当AP=BP时,则∠PAB=∠B=,如图,∴∠APB =,∵EF为PB的垂直平分线,∴PE=BE,∴∠BPE=∠B=,∴∠APE=,∴AE=2PE=2BE,∵AE+BE=6,∴AE=4;当BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠B=,∴BE=2EF,∵,∴,∴AE=AB-BE=;当点P在CB延长线上且BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠EBF=,∴BE=2EF,∵,∴,∴AE=AB+BE=;综上,AE的值为4或或.【点睛】此题考查了勾股定理及逆定理,直角三角形30度角的性质,线段垂直平分线的性质,等腰三角形的性质,求函数解析式,熟记各知识点并综合应用是解题的关键.2、(1) 公交车的速度为:米分;(2)①小明步行到达站时恰好有上行公交车到达站;②、两站相距的路程是6600米;③分钟【解析】【分析】(1)由图象上点可得小明步行的速度,从而可得函数解析式;由点的含义可得公交车的速度;(2)①先计算小明步行到达站需要分,再计算上行公交车到达站需要分,而,从而可得小明步行到达站时恰好有上行公交车到达站;②设小明星期一所用时间为,星期二到达站所用时间为,可得,,再利用列方程,再解方程即可得到答案;③由每隔10分钟一班,每辆公交车相距米,而步行的速度小于坐车时的速度,可得最短时间间隔发生在坐车时,从而可得答案.【详解】解:(1)由图象可知,小明步行的速度为(米分),的解析式为,公交车的速度为(米分);(2)①小明步行到达站需要(分,上行公交车到达站需要(分,,小明步行到达站时恰好有上行公交车到达站;②设小明星期一所用时间为,星期二到达站所用时间为,由题可知,,小明到达站所用时间是星期一的1.5倍,,解得,、两站相距的路程是6600米;③每隔10分钟一班,每辆公交车相距(米,步行的速度小于坐车时的速度,最短时间间隔发生在坐车时,间隔时间为(分钟).【点睛】本题考查的是从函数图象中获取信息,列函数关系式,一元一次方程的应用,理解题意与理解函数图象上点的坐标含义是解题的关键.3、(1)5,3,1;(2)2或或或【解析】【分析】(1)由图(b)得:AB=5,作DE⊥AB于E,则DE=BC=3,CD=BE,由勾股定理求出AE=4,得出CD=BE=AB−AE=1;(2)分情况讨论:①点P在AB边上时;②点P在BC上时;③点P在AD上时;由等腰三角形的性质和勾股定理即可得出答案.【详解】解:(1)由图(b)得:AB=5,AB+BC=8,∴BC=3,作DE⊥AB于E,如图1所示:则DE=BC=3,CD=BE,∵AD=AB=5,∴AE==4,∴CD=BE=AB−AE=1,故答案是:5,3,1;(2)解:可能;理由如下:分情况讨论:①点P在AB边上时,当DP=DB时,BP=2BE=2,当BP=BD时,BP=BD=;②点P在BC上时,存在PD=PB,设PD=BP=m,则CP=3-m,∴,解得:m=,∴BP=;③点P在AD上时,当BP=BD时, 则BP=BD=,当时,则AP=5-,过点P作PM⊥AB,则sinA=,cosA=,∴PM=(5-)=3-,AM=(5-)=4-,∴BM=5-(4-)=1+,∴PB==,综上所述:△BDP可能为等腰三角形,能使△BDP为等腰三角形的的值为:2或或或.【点睛】本题是四边形综合题目,考查了梯形的性质、平行线的性质、等腰三角形的性质与判定、直角三角形的性质、勾股定理等知识;本题综合性强,有一定难度.4、(1);(2)【解析】【分析】(1)先求得的范围,根据题意,列出关于的函数关系式,(2)根据(1)的关系式,将代入求解即可.【详解】解:(1)由题意,得;关于的函数关系式为(2)当时,,解得,答:滑行分钟时,滑车离终点1米.【点睛】本题考查了变量与关系式,理解题意,列出关系式是解题的关键.5、 (1)见解析(2)①x≠0,y≠0;②在各自的象限内,y随x的增大而减小;③无;④关于原点中心对称,关于直线成轴对称【解析】【分析】(1)列出若干组x,y的值,列出表格,在坐标系中描点,再用平滑的曲线连接即可;(2)根据图象直接得出结论.(1)解:列表x…-3-2-1123…y…-11… 描点、画图:(2)由图象可得:①自变量x的取值范围是x≠0,函数值y的取值范围是y≠0.②函数的增减性为:在各自的象限内,y随x的增大而减小.③函数无最值;④函数的对称性为:关于原点中心对称,关于直线成轴对称.【点睛】本题考查了画函数图象,函数的性质,属于基础知识,要能准确画出函数图象,从中得到函数性质,是一种基本的研究函数的方法.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试课时作业,共23页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习题,共22页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份2021学年第二十章 函数综合与测试复习练习题,共23页。试卷主要包含了在函数中,自变量的取值范围是,函数的图象如下图所示等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)