![2021-2022学年冀教版八年级数学下册第二十章函数单元测试练习题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12765527/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十章函数单元测试练习题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12765527/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十章函数单元测试练习题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12765527/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第二十章 函数综合与测试单元测试课后复习题
展开
这是一份2021学年第二十章 函数综合与测试单元测试课后复习题,共24页。
冀教版八年级数学下册第二十章函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两人沿同一条路从地出发,去往100千米外的地,甲、乙两人离地的距离(千米)与时间(小时)之间的关系如图所示,以下说法正确的是( )A.甲的速度是 B.乙的速度是C.甲乙同时到达地 D.甲出发两小时后两人第一次相遇2、小明同学利用周末从家里出发骑自行车到某小区参加志愿服务活动、活动结束后原路返回家中,他离家的距离y(千米)与时间x(小时)之间的函数图象如图中折线所示,若,小明返回时骑行的平均速度是前往某小区时的平均速度的,根据图中数据,下列结论中,正确的结论的是( )①某小区离小明家12千米;②小明前往某小区时,中途休息了0.25小时;③小明前往某小区时的平均速度是16千米/小时;④小明在某小区志愿服务的时间为1小时;⑤a的值为.A.2个 B.3个 C.4个 D.5个3、下列各图表示y是x的函数的图象是( )A. B.C. D.4、如图1,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( ).A.线段EF B.线段DE C.线段CE D.线段BE5、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个6、甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离与行驶时间之间的函数关系,则下列说法:①A、B两地相距;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢;④两车出发后,经过0.3小时,两车相遇.其中正确的有( )A.4个 B.3个 C.2个 D.1个7、习近平总书记在全国教育大会上强调,要坚持中国特色社会主义教育发展道路.培养德智体美劳全面发展的社会主义建设者和接班人.枣庄某学校利用周未开展课外劳动实践活动.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为( )A.1.1,8 B.0.9,3 C.1.1,12 D.0.9,88、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是( )A.①②④ B.①②③ C.①③④ D.②③④9、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有( )个A.1 B.2 C.3 D.410、甲、乙两人沿同一条路从A地出发,去往100千米外的B地,甲、乙两人离A地的距离(千米)与时间t(小时)之间的关系如图所示,以下说法正确的是( )A.甲的速度是40km/hB.乙的速度是30km/hC.甲出发小时后两人第一次相遇D.甲乙同时到达B地第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在、两地之间有汽车站在直线上),甲车由地驶往站,乙车由地驶往地,两车同时出发,匀速行驶.甲、乙两车离站的路程,(千米)与行驶时间(小时)之间的函数图象如图所示,则下列结论:①、两地相距440千米;②甲车的平均速度是60千米时;③乙车行驶11小时后到达地;④两车行驶4.4小时后相遇,其中正确的结论有是___.(填序号)2、函数的定义域是_____.3、函数y=中,自变量x的取值范围是 ___.4、函数的自变量x的取值范围是_______的实数.5、像y=0.5x+10这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的__________.三、解答题(5小题,每小题10分,共计50分)1、如图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家,其中表示时间,表示小明离他家的距离,根据图象回答问题:(1)菜地离小明家 km;(2)小明走到菜地用了 min;(3)小明给菜地浇水用了 min;(4)小明从菜地到玉米地走了 km;(5)小明从玉米地走回家平均速度是 km/min.2、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)在上升或下降过程中,无人机的速度为多少?(2)图中a表示的数是 ;b表示的数是 ;(3)无人机在空中停留的时间共有 分钟.3、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6立方米时,水费按a元/立方米收费;每户每月用水量超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分按c元/立方米收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量x(m3)收费y(元)357.54927(1)求a、c的值;(2)写出每月用水量x不超过6立方米和超过6立方米时,水费y与用水量x之间的关系式;(3)已知某户5月份的用水量为8立方米,求该用户5月份的水费.4、陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学的路程与所用时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是______米,书店到学校的距离是______米;(2)陈杰在书店停留了______分钟,本次上学途中,陈杰一共行驶了______米;(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米/分?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?5、为了提高天然气使用效率,保障居民的用气需求,某市推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3 元/m3,(1)根据题意,填写表:一户居民的年用气量150250350…付款金额/元 625 …(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式,并写出自变量的取值范围;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量. -参考答案-一、单选题1、A【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是,故选项符合题意;乙的速度为:,故选项不符合题意;甲先到达地,故选项不符合题意;甲出发小时后两人第一次相遇,故选项不符合题意;故选:A.【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.2、C【解析】【分析】由的纵坐标为12,可判断①,由可判断②,由总路程除以总时间可判断③,由可判断④,由返程时的速度为:千米/小时,可得返程用的时间为:小时,可判断⑤,从而可得答案.【详解】解:由的纵坐标为12,可得某小区离小明家12千米;故①符合题意;,则小明前往某小区时,中途休息了0.25小时,故②符合题意;由小明前小时的平均速度为:千米/小时, 所以小明后段的速度与前段的速度相等,所以后段的时间为:小时,小明前往某小区时的平均速度为: 千米/小时,故③不符合题意; 所以小明在某小区志愿服务的时间为1小时,故④符合题意; 返程时的速度为:千米/小时, 返程用的时间为:小时,小时,故⑤符合题意;综上:符合题意的有:①②④⑤,故选C【点睛】本题考查的是从函数图象中获取信息,理解图象上点的坐标含义是解本题的关键.3、D【解析】【详解】解:A、不是的函数的图象,此项不符题意;B、不是的函数的图象,此项不符题意;C、不是的函数的图象,此项不符题意;D、是的函数的图象,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)是解题关键.4、B【解析】【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】解:A、由图1可知,若线段EF是y,则y随x的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;B、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故此选项符合题意;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故此选项不符合题意;D、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故此选项不符合题意;故选B.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.5、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.6、B【解析】【分析】根据从B到A共行驶的路程可判断①;求出乙车行驶时间,甲车行驶时间,根据减法求出时间差可判断②;根据时间与路程,求出甲乙两车的速度,根据减法求出速度差可判断③;设两相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,根据甲乙共走全程列方程,求出时间t可判断④.【详解】解:乙从B地到A共行走24km,故①A、B两地相距正确; 乙摩托车从B到A地用0.5h,甲摩托车从A地到B地用0.6h,∴0.6-0.5=0.1h,故②甲车比乙车行完全程多用了0.1小时正确;甲摩托车行驶的速度为24÷0.6=40km/h,乙摩托车行驶的速度为24÷0.4=48km/h,∴48-40=8km/h,故③甲车的速度比乙车慢正确;设两车相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,∴40t+48t=24,解得h,故④两车出发后,经过0.3小时,两车相遇不正确.故选择B.【点睛】本题考查从行程图像获取信息和处理信息,看懂函数图像,列一元一次方程,时间差,速度差,掌握相关知识是解题关键.7、D【解析】【分析】直接根据函数图像进行解答即可.【详解】解:此函数大致可分以下几个阶段:①0﹣15分种,小强从家走到菜地;②15﹣25分钟,小强在菜地浇水;③25﹣37分钟,小强从菜地走到玉米地;④37﹣55分钟,小强在玉米地除草;⑤55﹣80分钟,小强从玉米地回到家;综合上面的分析得:由③的过程知,a=2﹣1.1=0.9千米;由②、④的过程知b=(55﹣37)﹣(25﹣15)=8分钟;故选:D.【点睛】本题考查了从函数图像中提取信息,读懂题意,理解函数图像的含义是解本题的关键.8、A【解析】【分析】由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.【详解】解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意;②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;③甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故③不符合题意;④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;所以正确的是①②④.故选:A.【点睛】本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.9、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t分钟追上甲,,解得t=7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.10、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得, 甲车出发第小时时距离A地千米,甲车出发第小时时距离A地千米,甲车的速度是千米/小时,故选项A符合题意;乙车出发小时时距离A地千米,乙车速度是千米/小时,故选项B不合题意; 甲车第小时到达地,甲车的速度是千米/小时,则甲车到达地用时小时,则甲车在第小时出发,由图像可得甲,乙两车在第小时相遇,则甲车出发小时两车相遇,故选项正确;甲车行驶千米时,乙车行驶了千米,甲车先到B地,故选项D不合题意; 故选:【点睛】本题主要考查了函数图象信息分析,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题1、①②③④【解析】【分析】根据题意结合图象确定符合甲乙行驶路线的函数图象,然后依次进行求解判断即可得出【详解】解:A、B两地相距:(千米),故①正确,甲车的平均速度:(千米小时),故②正确,乙车的平均速度:千米小时,(小时),乙车行驶11小时后到达A地,故③正确,设t小时相遇,则有:,解得:(小时),两车行驶4.4小时后相遇,故④正确,故答案为:①②③④.【点睛】题目主要考查根据函数图象获取信息进行求解及一元一次方程的应用,理解题意,结合图象确定符合甲乙行驶路线的函数图象是解题关键.2、【解析】【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得:3x+6≥0,解得x≥﹣2.故答案为:x≥﹣2.【点睛】本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3、x≠1.【解析】【分析】根据分母不能为0,可得x−1≠0,即可解答.【详解】解:根据题意得:x−1≠0,解得:x≠1.故答案是:x≠1.【点睛】本题考查了函数自变量的取值范围,解决本题的关键是明确分母不能为0.4、【解析】【分析】根据分式有意义的条件,二次根式有意义的条件,列出不等式,进而可得自变量x的取值范围.【详解】依题意解得【点睛】本题考查了函数的定义,分式有意义的条件,二次根式有意义的条件,掌握以上知识是解题的关键.5、解析式【解析】略三、解答题1、 (1)1.1(2)15(3)10(4)0.9(5)0.08【解析】【分析】结合已知、图象逐一进行分析即可解题.(1)解:由图象可知:菜地离小明家1.1千米故答案为:1.1;(2)由图象可知:小明从家到菜地用了15分钟故答案为:15;(3)由图象可知:小明给菜地浇水用了(分钟)故答案为:10;(4)由图象可知:小明从菜地到玉米地走了(千米)故答案为:0.9;(5)由图象可知:玉米地离小明家2千米,小明从玉米地走回家的平均速度为:.2、(1)无人机的速度为25米/分;(2)2;15;(3)9.【解析】【分析】(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;(2)根据(1)中求得的结果,由路程=速度×时间进行求解即可;(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可.【详解】解:(1)∵无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,∴无人机的速度为75-50=25米/分;(2)由题意得:,,故答案为:2,15;(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,故答案为:9【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像.3、(1)a=1.5,c=6;(2)时,,时,;(3)该用户5月份的水费为21元.【解析】【分析】(1)根据题意列出方程组,解出即可求解;(2)分时和当时,列出函数关系式,即可求解;(3)根据 ,将 代入,即可求解.【详解】解:(1)根据题意得: ,解得: ;(2)当时,,当时,;(3)∵ ,∴该用户5月份的水费(元).【点睛】本题主要考查了二元一次方程组的应用,列函数关系式,求函数值,明确题意,准确得到等量关系是解题的关键.4、(1)1500,900;(2)4,2700;(3)在分钟时间段,陈杰骑车速度最快;米/分;(4)陈杰以往常的速度去学校,需要分钟,本次上学比往常多用分钟.【解析】【分析】(1)根据图象中学校所在位置对应的纵坐标可得陈杰家到学校的距离,根据时间等于8分钟时可得陈杰家到书店的距离,再利用1500米减去这个距离即可得书店到学校的距离;(2)图象中水平段对应的时间即为陈杰在书店停留的时间,在前6分钟行驶了1200米,折返书店行驶了600米,再从书店到学校行驶了900米,将这些路程相加即可得;(3)结合函数图象,分别求出各段的速度即可得出答案;(4)先求出往常的速度,再求出以往常的速度去学校所需时间,由此即可得出答案.【详解】解:(1)陈杰家到学校的距离是1500米,书店到学校的距离是(米),故答案为:1500,900;(2)陈杰在书店停留了(分钟),本次上学途中,陈杰一共行驶了(米),故答案为:4,2700;(3)在分钟时间段,陈杰骑车速度为(米/分),在分钟时间段,陈杰骑车速度为(米/分),在分钟时间段,陈杰停留在书店买书,速度为0米/分,在分钟时间段,陈杰骑车速度为(米/分),答:在分钟时间段,陈杰骑车速度最快,最快的速度是450米/分;(4)由(3)可知,陈杰往常的速度为200米/分,则以往常的速度去学校所需时间为(分钟),本次上学比往常多用(分钟),答:陈杰以往常的速度去学校,需要分钟,本次上学比往常多用分钟.【点睛】本题考查了函数图象,读懂函数图象,从中正确获取信息是解题关键.5、(1)375,900;(2)y=;(3)340m3.【解析】【分析】(1)根据两种收费标准进行求解即可;(2)分两种情况:①当x≤300时,②当x>300时,根据题目所给收费标准求解即可;(3)先根据,得到,然后把y=870代入y=3x-150中进行求解即可.【详解】解:(1)由题意得:当一户居民的年用气量为的时候,付款金额为元,当一户居民的年用气量为的时候,付款金额为元,故答案为:375,900;(2)分两种情况:①当x≤300时,y=2.5x;②当x>300时,y=2.5×300+3×(x-300)=3x-150.综上所述,y关于x的解析式为y=;(3)∵,∴∴将y=870代入y=3x-150,得870=3x-150,解得x=340.∴该户居民的年用气量为340m3.【点睛】本题主要考查了根据表格求函数关系式,解题的关键在于能够准确读懂题意.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试当堂达标检测题,共21页。试卷主要包含了小明家,下列图象表示y是x的函数的是,如图所示的图象等内容,欢迎下载使用。
这是一份初中第二十章 函数综合与测试同步达标检测题,共23页。试卷主要包含了函数中,自变量x的取值范围是,当时,函数的值是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试一课一练,共24页。试卷主要包含了下列图象表示y是x的函数的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)