数学八年级下册第二十章 函数综合与测试一课一练
展开
这是一份数学八年级下册第二十章 函数综合与测试一课一练,共27页。试卷主要包含了函数y=的自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①2、如图所示,下列各曲线中表示是的函数的有()A.1个 B.2个 C.3个 D.4个3、甲、乙两地相距180km,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )A. B.C. D.4、A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的对应关系如图所示.以下有四个推断:①月上网时间不足35小时,选择方式A最省钱;②月上网时间超过55小时且不足80小时,选择方式C最省钱;③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元;④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费0.05元.所有合理推断的序号是( )A.①② B.①③ C.①③④ D.②③④5、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论中正确的是( )①两人前行过程中的速度为200米/分;②m的值是15,n的值是3000;③东东开始返回时与爸爸相距1500米;④运动18分钟或30分钟时,两人相距900米.A.①② B.①②③ C.①②④ D.①②③④6、EF是BC的垂直平分线,交BC于点D,点A是直线EF上一动点,它从点D出发沿射线DE方向运动,当减少时,增加,则y与x的函数表达式是( )A. B. C. D.7、函数y=的自变量x的取值范围是( )A.x≠0 B.x≠1 C.x≠±1 D.全体实数8、下列各表达式不是表示y是x的函数的是( )A. B.C. D.9、从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是( )v(m/s)25155﹣5t(s)0123A.v=25t B.v=﹣10t+25 C.v=t2+25 D.v=5t+1010、小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为(千米),速度为(千米/分),时间为(分)下列函数图象能表达这一过程的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,加油过程中的常量是________.2、函数中,自变量x的取值范围是________.3、山西近期遭遇严重洪涝灾害,万余间房屋倒塌.下图是汾河沿线某个村庄的受灾情况和蓝天救援队的排涝现场.某地需排水约,打开排水泵开始排水,排走的水量与排水时间的关系如下表所示.排水分钟后,剩下水量为________.排水时间/分钟…剩下的水量/… 4、 “早穿皮袄午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中, ________随__________变化而变化.5、在一个变化过程中,数值发生变化的量为_____.在一个变化过程中,数值始终不变的量为_____.在同一个变化过程中,理解变量与常量的关键词:发生_____和始终不变.三、解答题(5小题,每小题10分,共计50分)1、小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程(米)和所用时间(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是 米;小明在广场向行人讲解卫生防疫常识所用的时间是 分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)2、甲、乙两车分别从B,A两地同时出发,甲车匀速前往A地;乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;设甲、乙两车距A地的路程为y(千米),乙车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求乙车从B地到达A地的速度;(2)求乙车到达B地时甲车距A地的路程;(3)求乙车返回前甲、乙两车相距40千米时,乙车行驶的时间.3、下图是某物体的抛射曲线图,其中表示物体与抛射点之间的水平距离,表示物体的高度.(1)这个图象反映了哪两个变量之间的关系?(2)根据图象填表:0123456 (3)当距离取之间的一个确定的值时,相应的高度确定吗?(4)高度可以看成距离的函数吗?4、如图,中,,,.点P是射线CB上的一点(不与点B重合),EF是线段PB的垂直平分线,交PB与点F,交射线AB与点E,联结PE、AP.(1)求的度数;(2)当点P在线段CB上时,设,的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)如果,请直接写出的面积.5、如图,已知ABC中,,,AB=6,点P是射线CB上一点(不与点B重合),EF为PB的垂直平分线,交PB于点F,交射线AB于点E,联结PE、AP.(1)求∠B的度数;(2)当点P在线段CB上时,设BE=x,AP=y,求y关于x的函数解析式,并写出函数的定义域;(3)当APB为等腰三角形时,请直接写出AE的值. -参考答案-一、单选题1、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.2、C【解析】【分析】由题意依据函数的定义对各个函数图形进行分析判断即可得出答案.【详解】解:由对于的每一个确定的值,都有唯一确定的值与其对应可知,①、②、③表示是的函数,④不构成函数关系,共有3个.故选:C.【点睛】本题考查函数的识别,注意掌握在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数.3、C【解析】【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【详解】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点睛】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.4、C【解析】【分析】根据A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的图象逐一判断即可.【详解】由图象可知:①月上网时间不足35小时,选择方式A最省钱,说法正确;②月上网时间超过55小时且不足80小时,选择方式B最省钱,故原说法错误;③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元,说法正确;④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费为:(60﹣30)÷[(35﹣25)×60]=0.05(元),原说法正确;所以所有合理推断的序号是①③④.故选:C.【点睛】本题考查了函数的图象,掌握数形结合的方法是解答本题的关键.5、D【解析】【分析】根据题意和图象中的数据可以判断各个小题中的说法是否正确,从而可以解答本题.【详解】解:由图可得,两人前行过程中的速度为4000÷20=200(米/分),故①正确;m的值是20−5=15,n的值是200×15=3000,故②正确;爸爸返回时的速度为:3000÷(45−15)=100(米/分),则东东开始返回时与爸爸相距:4000−3000+100×5=1500(米),故③正确;运动18分钟时两人相距:200×(18−15)+100×(18−15)=900(米),东东返回时的速度为:4000÷(45−20)=160(米/分),则运动30分钟时,两人相距:1500−(160−100)×(30−20)=900米,故④正确,∴结论中正确的是①②③④.故选:D.【点睛】本题考查了从函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6、B【解析】【分析】根据垂直平分线的性质可得,,根据题意列出函数关系式即可【详解】 EF是BC的垂直平分线,是的角平分线设,即当减少时,则,增加,则故选B【点睛】本题考查了垂直平分线的性质,三角形内角和定理,列函数关系式,掌握垂直平分线的性质,等腰三角形三线合一是解题的关键.7、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得,所以自变量x的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.8、C【解析】略9、B【解析】【分析】根据表格中的数据,把对应的数据代入函数关系式中进行求解即可得到答案.【详解】解:A、当时,,不满足,故此选项不符合题意;B、当时,,满足,当时,,满足,当时,,满足,当时,,满足,故此选项符合题意;C、当时,,不满足,故此选项符合题意;D、当时,,不满足,故此选项符合题意;故选B.【点睛】本题主要考查了用表格表示变量间的关系,解题的关键在于能够熟练掌握用表格表示变量间的关系.10、C【解析】【分析】因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案.【详解】解:∵400×5=2000(米)=2(千米),∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米,而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,故排除选项A与B;又∵回到原出发地”表示终点的纵坐标为0,∴排除选项D,故选:C.【点睛】本题考查了函数的图象,解题的关键是理解函数图象的意义.二、填空题1、单价【解析】【分析】常量是指在变化过程中,数值始终不变的量【详解】解:加油过程中,单价×数量=总价,此时,单价是常量,数量和金额是变量.故答案为:单价【点睛】本题考查常量的定义,牢记相关的知识点是解题关键.2、x≥0【解析】【分析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵有意义,∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.3、26【解析】【分析】根据题意可得剩下的水量y=50−2t,故可求出放水12分钟后的水量.【详解】解:设剩下的水量为y,时间为t,则可得y=50−2t,∴放水12分钟后,水池中剩下的水量为:y=50−2×12=26m3,故答案为:26.【点睛】本题考查了函数关系式的知识,解答本题的关键是根据题意确定函数关系式.4、 温度 时间【解析】【分析】根据自变量和因变量的定义:自变量是会引起其他变量发生变化的变量,是被操控的;因变量是由一些变化而被影响的量,是被测定或被记录的;进行求解即可.【详解】解:“早穿皮袄午穿纱,围着火炉吃西瓜” 这句谚语反映了我国新疆地区一天中,温度随时间的变化而变化,故答案为:温度,时间.【点睛】本题主要考查了自变量和因变量,解题的关键在于能够熟知二者的定义.5、 变量 常量 变化【解析】略三、解答题1、(1)1280,6;(2)小华的速度为米/分钟,小明从广场跑去学校的速度为120米/分钟;(3)7:51;(4)在保证不迟到的情况下,小明最多可以讲解1次【解析】【分析】(1)根据函数图象,找出小明家和学校的距离是1280米,计算出小明在广场向行人讲解卫生防疫常识所用的时间即可;(2)根据速度=路程÷时间,分别求小华的速度和小明从广场跑去学校的速度;(3)根据函数图象可得当小华离家路程,根据速度=路程÷时间,算出用的时间,加上出分时间,由此解答即可;(4)根据函数图象可得,小明之前的速度,讲解时间,由此推断即可.【详解】(1)解:由图象可知,小明家和学校的距离是1280米;小明在广场向行人讲解卫生防疫常识所用的时间是: (分钟);故答案为:1280;6;(2)解:小华的速度为:(米/分钟),小明从广场跑去学校的速度为:(米/分钟);(3)解:(分钟),(分钟),答:小华在广场看到小明时是7:51;(4)解:(分钟),(分钟),因为,所以,在保证不迟到的情况下,小明最多可以讲解1次.【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.2、(1)100千米/小时;(2)100千米;(3)1.3小时或1.7小时【解析】【分析】(1)根据题意列算式即可得到结论;(2)根据题意求出n的值以及甲车的速度为即可解答;(3)求出甲车的速度以及乙车返回前的速度,再根据题意列方程解答即可.【详解】解:(1)m=300÷(180÷1.5)=2.5,∴乙车从A地到达B地所用的时间为2.5小时,∴乙车从B地返回A地所用时间:5.5-2.5=3(小时),∴乙车从B地到达A地的速度:300÷3=100(千米/小时);(2)n=300÷[(300﹣180)÷1.5]=3.75,甲车的速度为:(300﹣180)÷1.5=80(千米/时),故乙车到达B地时甲车距A地的路程为:80×(3.75﹣2.5)=100(km);(3)甲车的速度为80千米/时,乙车返回前的速度为:180÷1.5=120(千米/时),设乙车返回前甲、乙两车相距40千米时,乙车行驶的时间为x小时,根据题意得:80x+120x=300﹣40或80x+120x=300+40,解得x=1.3或x=1.7,故乙车返回前甲、乙两车相距40千米时,甲车行驶的时间为1.3小时或1.7小时.【点睛】本题考查了函数的图象、有理数的混合运算、一元一次方程的应用,理解题意,能从图象中获取相关联信息,行程问题的数量关系的运用是解答的关键.3、(1)反映了拋射距离与高度之间的关系;(2)2.0,2.5,2.65,2.5,2.0,1.2,0;(3)确定;(4)可以【解析】【分析】(1)根据变量的定义,即可求解;(2)根据图象填表即可;(3)根据这一范围内对于任一个距离,对应的函数值高度是唯一的,即可得到相应的高度是确定的;(4)根据函数的定义,即可求解.【详解】解:(1)根据题意得:这个图象反映了高度与拋射水平距离之间的关系;(2)根据图象填表如下:01234562.02.52.652.52.01.20 (3)当距离取之间的一个确定的值时,相应的高度是确定的,理由如下:因为这一范围内对于任一个距离,对应的函数值高度是唯一的,所以相应的高度是确定的;(4)∵高度随距离的变化而变化,并且对于任一个距离,对应的函数值高度是唯一的,∴高度可以看成距离的函数.【点睛】本题主要考查了函数与变量,熟练掌握设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量是解题的关键.4、(1);(2),定义域为:;(3)当点P在线段CB上时,,当点P在线段CB延长线上时,.【解析】【分析】(1)由题意及勾股定理逆定理可得,取BC的中点H,连接AH,则有,然后可得,则有,最后问题可求证;(2)过A作,垂足为点D,根据含30度直角三角形的性质可得,,然后根据勾股定理可得,进而根据三角形面积公式可进行求解;(3)由题意可分①当点P在线段CB上时,②当点P在线段CB延长线上时,然后分类求解即可.【详解】(1)解:∵中,,,,∴,.∴,∴.∵中,,,∴.取BC的中点H,连接AH,如图所示:∴,,∴,∴△AHC是等边三角形,∴,∴.(2)过A作,垂足为点D.中,∵,,∴.同理:.中,,∴,∴.∴,,∴,∴所求函数解析式为,∵点P在线段CB上,且不与点B重合,∴,∴定义域为:.(3)当时,①当点P在线段CB上时,由(2)可知:,②当点P在线段CB延长线上时,过A作,垂足为点M.如图所示:∵,,,∴,∴,∴,∴.【点睛】本题主要考查含30度直角三角形的性质、勾股定理及直角三角形斜边中线定理,熟练掌握含30度直角三角形的性质、勾股定理及直角三角形斜边中线定理是解题的关键.5、 (1)(2)当点P在线段BC上时,;当点P在CB延长线上时,(3)4或或【解析】【分析】(1)根据勾股定理的逆定理证明出△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,证得△ACM是等边三角形,求得∠B=;(2)当点P在线段BC上时,过点A作AD⊥BC于D,根据直角三角形的性质得到,,由勾股定理得,求出,得到,由勾股定理求出CD,BF,得到DP,由,推出,根据y>0,得到函数关系式;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,求出,勾股定理求得PH,根据,求出函数解析式;(3)当AP=BP时,根据等腰三角形等边对等角的性质及线段垂直平分线的性质证得∠APE=,得到AE=2PE=2BE,由此求出AE=4;当BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.当点P在CB延长线上且BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.(1)解:ABC中,,,AB=6,∵,∴△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,∵,,∴,∴AC=AM=CM,∴△ACM是等边三角形,∴,∴∠B=;(2)解:当点P在线段BC上时,过点A作AD⊥BC于D,在△ADB中,∠ADB=,∠B=,∴,同理,∴,在Rt△BEF中,,∴,∴,又∵BP=2BF,∴,∴DP =,∵,∴,∴,∵y>0,∴;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,∵PE=BE=x,, ∴,∴,∴,∵,∴,∴,∵y>0,∴;综上,当点P在线段BC上时,;当点P在CB延长线上时,;(3)解:当AP=BP时,则∠PAB=∠B=,如图,∴∠APB =,∵EF为PB的垂直平分线,∴PE=BE,∴∠BPE=∠B=,∴∠APE=,∴AE=2PE=2BE,∵AE+BE=6,∴AE=4;当BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠B=,∴BE=2EF,∵,∴,∴AE=AB-BE=;当点P在CB延长线上且BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠EBF=,∴BE=2EF,∵,∴,∴AE=AB+BE=;综上,AE的值为4或或.【点睛】此题考查了勾股定理及逆定理,直角三角形30度角的性质,线段垂直平分线的性质,等腰三角形的性质,求函数解析式,熟记各知识点并综合应用是解题的关键.
相关试卷
这是一份2021学年第二十章 函数综合与测试复习练习题,共23页。试卷主要包含了函数的图象如下图所示等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后练习题,共21页。试卷主要包含了下图中表示y是x函数的图象是,如图所示的图象等内容,欢迎下载使用。
这是一份数学八年级下册第二十章 函数综合与测试课时作业,共20页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。