2021学年第二十章 函数综合与测试同步测试题
展开
这是一份2021学年第二十章 函数综合与测试同步测试题,共28页。试卷主要包含了如图所示的图象等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示各图中反映了变量y是x的函数是( )A. B.C. D.2、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )A.y=n(+0.6) B.y=n()+0.6C.y=n(+0.6) D.y=n()+0.63、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是( )A. B.C. D.4、如图所示,下列各曲线中表示是的函数的有()A.1个 B.2个 C.3个 D.4个5、如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在第4小时到6小时的速度是25千米/时;④汽车出发后9小时返回原地.其中正确的说法共有( )A.1个 B.2个 C.3个 D.4个6、下列各自线中表示y是x的函数的是( )A. B.C.D.7、下列各曲线中,不表示y是x的函数的是( )A. B.C. D.8、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道处匀速跑往处,乙同学从处匀速跑往处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为(秒),甲、乙两人之间的距离为(米),与之间的函数关系如图所示,则图中的值是( )A. B.18 C. D.209、函数y=中的自变量x的取值范围是( )A.x>0 B.x≥﹣1 C.x>0且x≠﹣1 D.x≥﹣1且x≠010、如图,在边长为4的等边△ABC中,点P从A点出发,沿A→B→C→A的方向运动,到达A点时停止.在此过程中,线段AP的长度y随点P经过的路程x的函数图象大致是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数y=的定义域为 ___.2、定义:用_______来表示函数关系的方法叫做列表法.列表法一目了然,使用起来比较方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律.3、如图①,在直角梯形ABCD中,动点P从点B出发,沿BC、CD运动至点D停止,设点P运动的路程为x,△ABP的面积为y.若y关于x的函数图象如图②所示,则△BCD的面积是______.4、汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是_____,其中的常量是_____,变量是_____.5、 “早穿皮袄午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中, ________随__________变化而变化.三、解答题(5小题,每小题10分,共计50分)1、在直角梯形中,,,,联结,如图(a).点沿梯形的边,按照点移动,设点移动的距离为,.(1)当点从点移动到点时,与的函数关系如图(b)中折线所示.则______,_____,_____.(2)在(1)的情况下,点按照点移动(点与点不重合),是否能为等腰三角形?若能,请求出所有能使为等腰三角形的的值;若不能,请说明理由.2、如图,已知ABC中,,,AB=6,点P是射线CB上一点(不与点B重合),EF为PB的垂直平分线,交PB于点F,交射线AB于点E,联结PE、AP.(1)求∠B的度数;(2)当点P在线段CB上时,设BE=x,AP=y,求y关于x的函数解析式,并写出函数的定义域;(3)当APB为等腰三角形时,请直接写出AE的值.3、图(a)是某公共汽车线路收支差额(票价总收入减去运营成本)与乘客量的函数图象;目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,从而实现扭亏.公交公司认为:运营成本难以下降,公司已尽力,提高票价才能担亏根据这两种意见,可以把图(a)分别改画成图(b)和图(c).(1)说明图(a)中点和点的实际意义.(2)你认为图(b)和图(c)两个图象中,反映乘客意见的是______,反映公交公司意见的是______.4、如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→ A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒lcm,点Q的速度为每秒2cm, a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒lcm,图②是点P出发x秒后△APD的面积S(cm)与x(秒)的函数关系图象.(1)根据图象得a= ;b= ;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式,井写出自变量取值范围.5、滑车以1.5米/分钟的速度匀速地从轨道的一端滑向另一端,已知轨道的长为6米,滑车滑行分钟时离终点的路程为米.(1)求关于的函数关系式,并写出自变量的取值范围;(2)滑行多长时间时,滑车离终点1米? -参考答案-一、单选题1、D【解析】【分析】函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,只有D正确.故选:D.【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2、A【解析】【分析】由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A.【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.3、A【解析】【分析】先作出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中, ∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.4、C【解析】【分析】由题意依据函数的定义对各个函数图形进行分析判断即可得出答案.【详解】解:由对于的每一个确定的值,都有唯一确定的值与其对应可知,①、②、③表示是的函数,④不构成函数关系,共有3个.故选:C.【点睛】本题考查函数的识别,注意掌握在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数.5、C【解析】【分析】根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.【详解】解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错误;从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,故②正确;汽车在第4小时到6小时的速度是=千米/时,故③正确;由图象可知,当t=9时,s=0,汽车出发后9小时返回原地,故④正确.∴正确的说法有:②③④,共有3个.故选:C.【点睛】此题考查了函数图像问题,解题的关键是正确分析题目中信息进行求解.6、C【解析】【分析】根据函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)逐项判断即可得.【详解】解:A、一个的值对应两个或三个的值,则此项不符题意;B、一个的值对应一个或两个的值,则此项不符题意;C、任意一个都有唯一确定的一个和它对应,则此项符合题意;D、一个的值对应一个或两个的值,则此项不符题意;故选:C.【点睛】本题考查了函数,掌握理解函数的概念是解题关键.7、D【解析】【分析】根据函数的意义进行判断即可.【详解】解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.故选:D.【点睛】本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.8、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.【详解】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=,故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.9、D【解析】【分析】根据二次根式被开方数大于或等于0和分母不为0列不等式组即可.【详解】解:由题意得:x+1≥0且x≠0,解得:x≥-1且x≠0,故选:D.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10、A【解析】【分析】根据题意,当点从点运动到点时,的长度随的增大而增大;当点从运动到的中点时,随的增大而减小;当点从的中点运动到点时,随的增大而增大;当点从运动到时,随的增大而减小,最后减小至0,且和时,的值相等,据此判断即可.【详解】解:由题意可知,当点从点运动到点时,的长度随的增大而增大;当点从运动到的中点时,随的增大而减小;且当时,的值最小,故可排除选项与选项;当点从的中点运动到点时,随的增大而增大;当点从运动到时,随的增大而减小,最后减小至0,且和时,的值相等,故选项符合题意,选项不合题意.故选:A.【点睛】本题考查了动点问题的函数图象,三角形的面积等知识,解题的关键是熟练掌握数形结合思想方法.二、填空题1、x>2【解析】【分析】根据二次根式中被开方数非负,同时注意分母不为零,即可求得函数的定义域.【详解】由题意得:且x-2≠0解得:x>2故答案为:x>2【点睛】本题考查了求函数的自变量的取值范围,即函数的定义域.一般考虑下列情形:函数解析式有分母时,分母不为零;含有二次根式时,要求被开方数非负.2、表格【解析】略3、3【解析】【分析】由图2可知,当到P与C重合时最大,△ABP的面积最大,此时可求得BC=2;然后可知当P在CD上移动时面积不变,可知CD=5-2=3,因此可求△BCD的面积.【详解】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.故答案为:3.【点睛】本题考查了动点问题的函数图象,理解问题,弄清题意,能够通过图象知道随自变量的增大,函数值是增大还是减小是解题的关键.4、 Q=40-5t 40,5 Q,t【解析】略5、 温度 时间【解析】【分析】根据自变量和因变量的定义:自变量是会引起其他变量发生变化的变量,是被操控的;因变量是由一些变化而被影响的量,是被测定或被记录的;进行求解即可.【详解】解:“早穿皮袄午穿纱,围着火炉吃西瓜” 这句谚语反映了我国新疆地区一天中,温度随时间的变化而变化,故答案为:温度,时间.【点睛】本题主要考查了自变量和因变量,解题的关键在于能够熟知二者的定义.三、解答题1、(1)5,3,1;(2)2或或或【解析】【分析】(1)由图(b)得:AB=5,作DE⊥AB于E,则DE=BC=3,CD=BE,由勾股定理求出AE=4,得出CD=BE=AB−AE=1;(2)分情况讨论:①点P在AB边上时;②点P在BC上时;③点P在AD上时;由等腰三角形的性质和勾股定理即可得出答案.【详解】解:(1)由图(b)得:AB=5,AB+BC=8,∴BC=3,作DE⊥AB于E,如图1所示:则DE=BC=3,CD=BE,∵AD=AB=5,∴AE==4,∴CD=BE=AB−AE=1,故答案是:5,3,1;(2)解:可能;理由如下:分情况讨论:①点P在AB边上时,当DP=DB时,BP=2BE=2,当BP=BD时,BP=BD=;②点P在BC上时,存在PD=PB,设PD=BP=m,则CP=3-m,∴,解得:m=,∴BP=;③点P在AD上时,当BP=BD时, 则BP=BD=,当时,则AP=5-,过点P作PM⊥AB,则sinA=,cosA=,∴PM=(5-)=3-,AM=(5-)=4-,∴BM=5-(4-)=1+,∴PB==,综上所述:△BDP可能为等腰三角形,能使△BDP为等腰三角形的的值为:2或或或.【点睛】本题是四边形综合题目,考查了梯形的性质、平行线的性质、等腰三角形的性质与判定、直角三角形的性质、勾股定理等知识;本题综合性强,有一定难度.2、 (1)(2)当点P在线段BC上时,;当点P在CB延长线上时,(3)4或或【解析】【分析】(1)根据勾股定理的逆定理证明出△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,证得△ACM是等边三角形,求得∠B=;(2)当点P在线段BC上时,过点A作AD⊥BC于D,根据直角三角形的性质得到,,由勾股定理得,求出,得到,由勾股定理求出CD,BF,得到DP,由,推出,根据y>0,得到函数关系式;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,求出,勾股定理求得PH,根据,求出函数解析式;(3)当AP=BP时,根据等腰三角形等边对等角的性质及线段垂直平分线的性质证得∠APE=,得到AE=2PE=2BE,由此求出AE=4;当BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.当点P在CB延长线上且BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得,求出BE,即可得到AE的值.(1)解:ABC中,,,AB=6,∵,∴△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,∵,,∴,∴AC=AM=CM,∴△ACM是等边三角形,∴,∴∠B=;(2)解:当点P在线段BC上时,过点A作AD⊥BC于D,在△ADB中,∠ADB=,∠B=,∴,同理,∴,在Rt△BEF中,,∴,∴,又∵BP=2BF,∴,∴DP =,∵,∴,∴,∵y>0,∴;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,∵PE=BE=x,, ∴,∴,∴,∵,∴,∴,∵y>0,∴;综上,当点P在线段BC上时,;当点P在CB延长线上时,;(3)解:当AP=BP时,则∠PAB=∠B=,如图,∴∠APB =,∵EF为PB的垂直平分线,∴PE=BE,∴∠BPE=∠B=,∴∠APE=,∴AE=2PE=2BE,∵AE+BE=6,∴AE=4;当BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠B=,∴BE=2EF,∵,∴,∴AE=AB-BE=;当点P在CB延长线上且BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠EBF=,∴BE=2EF,∵,∴,∴AE=AB+BE=;综上,AE的值为4或或.【点睛】此题考查了勾股定理及逆定理,直角三角形30度角的性质,线段垂直平分线的性质,等腰三角形的性质,求函数解析式,熟记各知识点并综合应用是解题的关键.3、(1)点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)反映乘客意见的是图(c),反映公交公司意见的是图(b).【解析】【分析】(1)读题看图两结合,从中获取信息做出判断.点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)根据题意知图象反映了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的成本情况,再结合图象进行说明.【详解】解:(1)点的实际意义是运营前的前期投入为1万元,点的实际意义是当乘客量达到1.5万人次时收支平衡;(2)反映乘客意见的是图(c),反映公交公司意见的是图(b).由图(b)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持成本不变,由图(c)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是降低成本而保持票价不变;综上可得图(b)的建议是提高票价,图(c)的建议是降低成本,故反映乘客意见的是图(c),反映公交公司意见的是图(b).【点睛】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,解题关键是掌握读图能力和数形结合思想.4、(1)a=6;b=2;(2)y1=2x-6(6≤x≤17),y2=22-x(6≤x≤22)【解析】【分析】(1)先判断出P改变速度时是在AB上运动,由此即可求出改变速度的时间和位置,从而求出a,再根据在第8秒P的面积判断出此时P运动到B点,即可求出b;(2)根据P和Q的总路程都是CD+BC+AB=28cm,然后根据题意进行求解即可.【详解】解:(1)∵当P在线段AB上运动时,,∴当P在线段AB上运动时,△APD的面积一直增大,∵四边形ABCD是矩形,∴AD=BC=10cm,∴当P在线段AB上运动时,△APD的面积的最大值即为P运动到B点时,此时,由函数图像可知,当P改变速度时,此时P还在AB上运动,∴,即,解得,∴,∴又由函数图像可知当P改变速度之后,在第8秒面积达到40cm2,即此时P到底B点∴,∴,故答案为:6,2;(2)由(1)得再第6秒开始改变速度,∴改变速度时,P行走的路程为6cm,Q行走的路程为12cm,∵Q和P的总路程都为CD+BC+AB=28cm,∴,【点睛】本题主要考查了从函数图像上获取信息,解题的关键在于能够准确根据函数图像判断出P点在改变速度时是在AB上运动.5、(1);(2)【解析】【分析】(1)先求得的范围,根据题意,列出关于的函数关系式,(2)根据(1)的关系式,将代入求解即可.【详解】解:(1)由题意,得;关于的函数关系式为(2)当时,,解得,答:滑行分钟时,滑车离终点1米.【点睛】本题考查了变量与关系式,理解题意,列出关系式是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试综合训练题,共23页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习,共18页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份2020-2021学年第二十章 函数综合与测试同步达标检测题,共25页。试卷主要包含了函数中,自变量x的取值范围是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。