初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题,共20页。试卷主要包含了函数中,自变量x的取值范围是,下图中表示y是x函数的图象是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x2、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④3、如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在第4小时到6小时的速度是25千米/时;④汽车出发后9小时返回原地.其中正确的说法共有( )A.1个 B.2个 C.3个 D.4个4、函数中,自变量x的取值范围是( )A. B.且 C. D.且5、甲、乙两地相距180km,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )A. B.C. D.6、下图中表示y是x函数的图象是( )A. B.C. D.7、如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是( )A. B.C. D.8、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示9、甲、乙两人沿同一条路从A地出发,去往100千米外的B地,甲、乙两人离A地的距离(千米)与时间t(小时)之间的关系如图所示,以下说法正确的是( )A.甲的速度是40km/hB.乙的速度是30km/hC.甲出发小时后两人第一次相遇D.甲乙同时到达B地10、变量x与y之间的关系是,当时,自变量x的值是( )A.13 B.5 C.2 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某生物研究所的水池有两个进水管和一个出水管,进水管的水流速为2立方米分,出水管的水流速为1立方米/分,如果水池中原有10立方米的水,最大容量是40立方米,同时打开三个水管到水池放满后再将它们同时关闭,这一过程中水池中的水量V(立方米)与打开水管后经过的时间t(分钟)之间的函数关系式是___________,其中自变量t的取值范围是____________.2、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200…剩余油量Q(升)4035302520…则该汽车每行驶100千米的耗油量为 _____升.3、国庆期间,小艾同学和小一同学相约在某小区门口一同出发,各自骑自行车前往距离2000米的欢乐谷游玩,出发后不久,小艾突感身体不适,于是在路旁休息了4分钟后再次出发,以1.2倍之前的速度冲向终点,小一同学则在到达终点之后立即原路原速返回迎接小艾同学,最终陪同小艾同学骑完了全程.在整个骑行过程中,变速前后小艾同学、小一同学两人均保持匀速,且途中掉头时间忽略不计,小艾同学、小一同学两人相距的路程(米)与出发的时间(秒)之间的关系如图所示.则第二次相遇时,小艾、小一两位同学距离终点__________米.4、用函数观点解决实际问题:(1)搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;(2)分清______和______,并注意自变量的______.5、汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是_____,其中的常量是_____,变量是_____.三、解答题(5小题,每小题10分,共计50分)1、一个三角形的底边长为5,高h可以任意伸缩.写出面积S随h变化的解析式,并指出其中的常量与变量,自变量与函数,以及自变量的取值范围.2、实验室甲、乙两人相约一起去距二人所在地的市器材店购买器材.两人都从实验室出发,沿一条笔直的公路匀速前往器材店.乙因有事耽搁就让甲骑摩托车先出发,一段时间后乙开车沿同一路线出发,两人都到达器材店后一起购买器材.设甲行驶的时间为,两人之间的距离为.如图表示两人在前往器材店的路上,与函数关系的部分图像.请你解决以下问题:(1)说明点、点、点的实际意义;(2)求出甲、乙的速度;(3)当__________时,两人之间相距8千米?3、有这样一个问题:探究函数的图象与性质小明根据学习函数的经验,对函数的图象与性质进行了探究:下面是小明的探究过程,请补充完整(1)函数的自变量的取值范围是 (2)下表是与的几组对应值…………求的值(3)如图,在坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象(4)进一步探究发现该函数的性质:当 时,随的增大而增大4、已知:在Rt△ABC中,,,,左右作平行移动的等边三角形的两个顶点、始终在边上,、分别与相交于点、.(1)如图1,当点与点重合时,点恰好在斜边上,求的周长;(2)如图2,在作平行移动的过程中,图中是否存在与线段始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;(3)假设点与点的距离为,与的重叠部分的面积为,求与的函数关系式,并写出定义域.5、某商店一种玩具定价为15元,商店为了促销于是打出广告:凡购买6个以上者则超过6个的部分一律打八折.(1)如果购买款用y(元)表示,购买数量用x(个)表示,求出y与x之间的函数关系式;(2)当x=4、x=8时,购买款分别是多少元? -参考答案-一、单选题1、D【解析】【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.2、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.3、C【解析】【分析】根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.【详解】解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错误;从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,故②正确;汽车在第4小时到6小时的速度是=千米/时,故③正确;由图象可知,当t=9时,s=0,汽车出发后9小时返回原地,故④正确.∴正确的说法有:②③④,共有3个.故选:C.【点睛】此题考查了函数图像问题,解题的关键是正确分析题目中信息进行求解.4、B【解析】【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x-2≥0且x−3≠0,解得且.故选:B.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5、C【解析】【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【详解】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点睛】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.6、C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义,表示y是x函数的图象是C.故选:C.【点睛】理解函数的定义,是解决本题的关键.7、B【解析】【分析】根据动点P的正方形各边上的运动状态分类讨论△APD的面积即可;【详解】由点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0;当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8;当8≤x≤12时,点P在CB上运动,△APD的面积y=8;当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32;故选B.【点睛】本题主要考查了正方形的性质,动点问题与函数图象结合,准确分析计算是解题的关键.8、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.9、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得, 甲车出发第小时时距离A地千米,甲车出发第小时时距离A地千米,甲车的速度是千米/小时,故选项A符合题意;乙车出发小时时距离A地千米,乙车速度是千米/小时,故选项B不合题意; 甲车第小时到达地,甲车的速度是千米/小时,则甲车到达地用时小时,则甲车在第小时出发,由图像可得甲,乙两车在第小时相遇,则甲车出发小时两车相遇,故选项正确;甲车行驶千米时,乙车行驶了千米,甲车先到B地,故选项D不合题意; 故选:【点睛】本题主要考查了函数图象信息分析,解答本题的关键是明确题意,利用数形结合的思想解答.10、C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.二、填空题1、 【解析】【分析】根据题意,先求求得自变量的取值范围,再结合题意列出函数表达式即可.【详解】解:依题意,同时打开三个水管到水池放满后再将它们同时关闭,放满所需要的时间为,,依题意,,即,故答案为:,.【点睛】本题考查了列函数关系式,理解题意列出函数关系式是解题的关键.2、10【解析】【分析】根据表格中两个变量的变化关系得出函数关系式即可.【详解】解:根据表格中两个变量的变化关系可知,行驶路程每增加50千米,剩余油量就减少5升,所以行驶路程每增加100千米,剩余油量就减少10升,故答案为:10.【点睛】本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提.3、204.【解析】【分析】设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,利用70秒相距70米,得出v1=v2+1,利用小一500秒到终点,求出v2,,再求出小一到终点时,小艾距终点的路程,利用两者相向而行510米所用时间即可【详解】解:∵70秒时,两人相距70米,然后小艾休息,小一追上,说明小艾速度快,设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,∴70v1-70v2=70,∴v1=v2+1,小一欢骑自行车到乐谷,用500秒,小一的速度为2000÷500=4米/秒,∴小艾的速度为5米/秒,小艾在路旁休息了4分钟后再次出发,以1.2×5=6米/秒的速度冲向终点,2000-70×5-[500-(70+4×60)]×6=2000-350-1140=510米,当小一到终点时,小艾距终点510米,小一返回与小艾相遇时间为:510÷(4+6)=51秒,此时距终点51×4=204米.故答案为204.【点睛】本题考查利用函数图像获取信息,掌握图像的这点含义是解题关键.4、 自变量 函数 取值范围【解析】略5、 Q=40-5t 40,5 Q,t【解析】略三、解答题1、常量,变量h,S,自变量,函数S,.【解析】【分析】根据三角形的面积公式,可得函数关系式.【详解】解:由三角形的面积公式,得:,常量是,变量h,S,自变量,函数S.【点睛】本题考查了函数关系式,利用三角形的面积公式得出函数解析式是解题关键.2、 (1)点所表示的含义为:甲先走20分钟,此时甲乙相距10千米,表示的含义为:乙行驶30分钟追上了甲,此时甲乙两人相遇,表示的含义为:乙行驶70分钟,此时两人相距千米.(2)甲的速度为每分钟千米,乙的速度为每分钟千米.(3)当分钟或分钟或分钟或分钟时,两人相距8千米.3、 (1)全体实数(2)1(3)图像见解析(4)>2【解析】【分析】(1)根据题目中的函数解析式,可以得到x的取值范围;(2)将x=4代入函数解析式,即可得到y的值;(3)根据表格中的数据,可以画出相应的函数图象;(4)根据函数图象,可以写出当x为何值时,y随x的增大而增大.(1)函数的自变量x的取值范围是全体实数,故答案为:全体实数;(2)当x=4时,,即m的值是1;(3)如下图所示,(4)由图象可得,当x>2时,y随x的增大而增大,故答案为:>2.【点睛】本题考用描点法画函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4、 (1)△DEF的周长为9(2)存在,.证明见解析(3)【解析】【分析】(1)根据已知条件求出AC及∠A的度数,由等边三角形求出∠ADC=90°,求出CD即可得到周长;(2)根据边长求出CF+BE=3,根据等边三角形的性质求出,得到EG=BE,由,得到;(3)分别求出△DEF与△DGH的面积,两者相减即可得到函数解析式.(1)解:在中,,,,,,是等边三角形,,,,,的周长;(2)解:结论:.理由:,,,是等边三角形,,,,,,;(3),,.【点睛】此题考查了等边三角形的性质,平移的性质,等角对等边证明边相等,直角三角形的性质,利用公式求三角形的面积,求函数解析式,正确掌握直角三角形的性质及等边三角形的性质是解题的关键.5、(1)y=;(2)60元,114元【解析】【分析】(1)根据题意分段列出函数表达式即可;(2)根据(1)的结论,将x=4、x=8代入函数解析式即可求得答案.【详解】解:(1)由题意可得,当0<x≤6时,y=15x,当x>6时,y=15×6+(x﹣6)×15×0.8=12x+18,由上可得,y与x的函数关系式为:y=;(2)当x=4时,y=15×4=60,当x=8时,y=12×8+18=114,答:当x=4,x=8时,货款分别为60元,114元.【点睛】本题考查了列函数解析式,已知自变量的值求函数值,根据题意列出函数解析式是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题,共23页。
这是一份2021学年第二十章 函数综合与测试复习练习题,共23页。试卷主要包含了函数的图象如下图所示等内容,欢迎下载使用。
这是一份2020-2021学年第二十章 函数综合与测试课时训练,共21页。试卷主要包含了小斌家等内容,欢迎下载使用。